Tags Posts tagged with "eólica marina"

eólica marina

El innovador parque eólico marino Nissum Bredning Vind de 28 MW, situado en aguas del noroeste de Dinamarca, está plenamente operativo y produciendo energía para los clientes Nissum Bredning Vindmøllelaug y Jysk Energi desde principios de 2018. El proyecto, que utiliza los primeros aerogeneradores marinos fabricados en serie Direct Drive SWT-7.0-154, es una muestra del compromiso de Siemens Gamesa con la innovación y la reducción de costes. Los aerogeneradores y otros avances tecnológicos han cumplido con las expectativas y ahora están en preparación para su despliegue comercial.

Nissum Bredning Vind es un proyecto de pequeña capacidad, especialmente cuando se compara con otros
proyectos de energía eólica marina. Pero es extremadamente relevante en términos de innovación. Siemens Gamesa ha probado y validado diversas nuevas tecnologías, desde un sistema de transmisión a 66 kV, pasando por cimentaciones tipo jacket con piezas de transición de hormigón, hasta la instalación de cable en tubo.Todas estas innovaciones comparten el objetivo común de reducir el LCoE de la energía eólica marina.

Algunos de los elementos instalados en Nissum Bredning Vind permiten reducir los costes hasta un 30% en
comparación con elementos tradicionales. La innovadora instalación de cable en tubo, en la que los cables marítimos estándar se instalan en tubos de plástico desde tierra firme hasta el parque y entre los aerogeneradores, reduce los costes en comparación con el empleo de cables marítimos. Las cimentaciones gravity jacket proporcionan, a profundidades de agua normales, un anclaje al lecho marino más rentable en comparación con las cimentaciones clásicas. Además, la pieza de transición de hormigón se puede fabricar con un coste hasta un 30% inferior al de una pieza de transición de acero. Por su parte, el sistema de 66 kV reduce las pérdidas de transmisión, proporcionando al cliente una mayor producción de energía – y por lo tanto mayores ingresos – de cada aerogenerador.

La empresa Haizea Wind ha inaugurado, en el puerto de Bilbao una de las mayores plantas de fabricación de torres eólicas y estructuras para eólica marina de Europa. La inversión total realizada, entre la construcción de la nave, su equipamiento y puesta en marcha ha superado los 60 M€. Esta planta singular y de última generación dispone, por un lado, de cerca de 77.000 m2 en el muelle AZ-2 de la Ampliación del puerto en el Abra exterior, concretamente en la zona de Zierbena, con acceso directo al muelle de atraque, que cuenta con un calado de 21 m. Estos amplios calados y la cercanía al muelle, le permitirán garantizar la logística de entrada y salida más competitiva sin restricciones dimensionales.

Por otro lado, la propia nave tiene 500 m de largo y está compuesta por tres naves de 35 m de ancho cada una, Está dotada, además, de maquinaria de última generación, que le permite producir piezas de gran tamaño y calidad con los plazos más cortos. Las capacidades de la fábrica se han desarrollado para cubrir las dimensiones actuales y futuras de torres y cimentaciones eólicas marinas.

En plena capacidad productiva, Haizea Wind puede fabricar 300 secciones de torres eólicas marinas al año, de 50 m de largo y hasta 8,6 m de diámetro y un espesor de chapa de 130 mm. Estas torres eólicas constituyen uno de los elementos principales de un aerogenerador.

La planta también realizará otras piezas de gran tamaño usadas en los parques eólicos marinos como monopilotes y piezas de transición (TPs). Producirá, en concreto, 100 monopilotes al año (equivalentes a 100.000 t), de 100 m de largo y hasta 10,5 m de diámetro y 130 mm de espesor.

Como materia prima se parte de chapa de acero al carbono entregada en su mayoría desde las acerías cercanas, las bridas, también de acero, y elementos internos eléctricos y mecánicos. Se espera, en concreto, que la planta utilice, entre otras materias primas, unas 142.500 t de chapa gruesa y 7.500 t de bridas. En total, aportará un tráfico portuario cercano a las 150.000 t/año cuando esté a plena capacidad productiva. Asimismo, más allá del tráfico en toneladas, este proyecto aportará, sobre todo, un valor añadido, porque tiene un carácter estratégico para el puerto y para Euskadi.

La planta ha comenzado a producir con 86 empleados, pero cuando esté a plena capacidad contará con entre 250 y 300 empleados.

El puerto de Bilbao al servicio de una industria eólica vasca pujante

Este proyecto estratégico es fruto de la colaboración público-privada.La construcción ha sido llevada a cabo por la UTE formada por las empresas Construcciones Intxausti, Byco (Inbisa Construcción) y Gaimaz Infraestructuras y Servicios. Su construcción y uso se enmarcan dentro del plan de inversiones de la Autoridad Portuaria para activar la puesta en marcha de proyectos logístico-industriales, como el eólico, que aporten tráficos y generen empleos, recursos y riqueza para el territorio, ya que – además de los propios empleos que creará la empresa directamente- por la tipología y dimensiones de las piezas, fomentará un aumento de los trabajos de manipulación de estiba y trincaje.

Haizea Wind Group (HWG) es un grupo industrial, con sede en Bilbao y una amplia experiencia en la fabricación de torres eólicas dotado de una mirada global e internacional. Su objetivo es convertirse en un proveedor global del sector eólico.

La planta del puerto de Bilbao es el segundo arranque en seis meses del grupo. El primero ha sido una fábrica de torres eólicas en Argentina, que se ha construido bajo el paraguas de una joint-venture con un fabricante local. Con el nombre de Haizea-Sica comenzó a operar en el cuarto trimestre de 2017 y alcanzará una producción de 350 secciones al año.

El tercer paso hacia la globalización es la firma de otra joint-venture en Arabia Saudí, con la compañía local Al-Babtain, que estará totalmente dedicada a la producción de torres. La planta se ubica en King Abdullah Economic City (KAEC), en la costa occidental del país, cerca de las ciudades de Jeddah, Meca y Medina. La planta se comenzará a construir en el segundo semestre 2018, de modo que las primeras secciones puedan producirse y entregarse a los clientes durante el primer semestre de 2019. La capacidad de la planta será de 350 secciones al año.

Después de un año tras el lanzamiento oficial del proyecto ROMEO, los socios del consorcio se han reunido recientemente en Copenhague para celebrar su Asamblea General. El principal objetivo de esta reunión es realizar el seguimiento del proyecto y definir los próximos pasos para alcanzar los objetivos establecidos. La reunión ha sido organizada por Ramboll, en su sede central en la capital danesa. El proyecto ROMEO tiene como objetivo reducir los costes de operación y mantenimiento (O&M) de los parques eólicos marinos a través del uso de estrategias y herramientas de monitorización avanzadas, así como analizar el rendimiento de los aerogeneradores de los parques en tiempo real.

Para alcanzar este logro, ROMEO desarrollará una plataforma basada en la nube que acomodará modelos para diagnosticar y predecir fallos en los componentes de los aerogeneradores. Esta plataforma promoverá una mejor comprensión del rendimiento de los componentes principales del aerogenerador en operación, con el objetivo de extender su vida útil y reducir los costes de O&M.

El proyecto ROMEO está financiado por el programa Horizonte2020 de la Unión Europea. La iniciativa, que se extenderá hasta el próximo año 2022, cuenta con una financiación europea de 10 M€ y un presupuesto total de 16 M€.

La Asamblea General es una oportunidad única para establecer discusiones y puntos de avance sobre los diferentes paquetes de trabajo del proyecto y avanzar hacia su objetivo final: la reducción del coste de la energía eólica marina y el impulso de la industria de las energías renovables.

Sólida hoja de ruta para avanzar en los objetivos

Durante el primer año, los procedimientos del proyecto ROMEO se han establecido para definir la estrategia de monitoreo de los componentes de turbina más relevantes. Además, se ha establecido un marco común para la estructura del proyecto, aspecto clave para los tres escenarios piloto de parques eólicos en lo que se refiere a los componentes de aerogeneradores y estructuras.

Asimismo, durante el último año se han organizado varios workshops de FMECA (Failure mode, effects and criticality analysis) en los que han participado Iberdrola, Siemens Gamesa, Ramboll, Adwen y EDF. El objetivo de estos workshops ha sido el de establecer los componentes y fallos que se analizarán en el marco del proyecto ROMEO, tanto para la turbina eólica como para la subestructura.

Los modelos de fallo que se aplicarán para el mantenimiento predictivo se identificaron de acuerdo a su importancia. El resultado de este conjunto de talleres ha sentado también las bases para validar el resto de los paquetes de trabajo técnico incluidos en el proyecto.

La plataforma de gestión de O&M comienza a desarrollarse

Otro hito clave que permitirá establecer la estructura del proyecto es el sistema de gestión de la información de O&M ya configurado. La plataforma podrá adaptarse al procesamiento de todos los flujos de datos que se obtendrá a partir de diferentes fuentes.

Al mismo tiempo, ROMEO ha comenzado el desarrollo de los modelos físicos para el diseño de funcionamiento y la estructura de soporte que permitirá monitorizar los problemas de los parques eólicos.

Durante la reunión los socios también tuvieron ocasion de analizar el desarrollo de las tres demostraciones piloto que se desarrollarán en los parques eólicos marinos de Wikinger (Alemania), y Teeside y East Anglia ONE (Reino Unido). En estos escenarios se probarán y verificarán las herramientas de análisis de datos y O&M. En este sentido, la definición de la arquitectura para la adquisición de datos y el ecosistema analítico ha sido prácticamente concluida.

La reunión también ha sido una buena oportunidad para presentar los últimos avances de la estrategia de difusión y comunicación del Proyecto, enfocado en llegar a todos los actores de la cadena de valor del sector eólico y al público en general.

Finalmente, se han definido los pasos hacia la definición de la estrategia de explotación del proyecto. Los socios están actualmente trabajando en la definición de los resultados, productos y servicios que llegarán al mercado a través de las innovaciones desarrolladas en el proyecto.

Sobre el proyecto ROMEO

El consorcio del proyecto, formado por empresas y entidades europeas que cubren toda la cadena de valor del sector, está trabajando en el desarrollo de una plataforma analítica y de gestión que permita mejorar el proceso de toma de decisiones y facilitar el desarrollo de la operación actual y Estrategias de mantenimiento (O&M) basadas en medidas correctivas a estrategias innovadoras en tiempo real, y en la degradación de los componentes de las principales estructuras de parques eólicos.

Los socios del proyecto cubren toda la cadena de valor del sector, compuesto por 12 entidades, procedentes de seis estados miembros de la UE y un país asociado. Además de Iberdrola, que lidera el
proyecto, el consorcio incluye a grandes empresas (EDF, ADWEN, Siemens Gamesa, Ramboll, IBM Research Zurich, INDRA, Bachmann), pymes (Laulagun Bearings, Uptime Engineering, ZABALA Innovation Consulting), y la Universidad de Cranfield. Todas estas organizaciones trabajarán en colaboración para la consecución de los objetivos del proyecto.

Alemania ha anunciado los resultados de su última subasta eólica marina. Seis proyectos ganaron. Tienen una potencia total conjunta de 1,6 GW y se dividen en partes iguales entre el Mar del Norte y el Mar Báltico.

La oferta ganadora más baja fue de 0 €/MWh por encima del precio de la energía al por mayor y la más alta fue de 98,30 €/MWh (precio total que incluye la prima y el precio mayorista). Los precios no incluyen los costes de la conexión a la red. El estado alemán paga por eso. El precio promedio de los seis precios ganadores fue de 46,6 €/MWh.

Ørsted ofertó a 0 €/MWh para desarrollar el parque eólico Borkum Riffgrund West 1 de 420 MW en el Mar del Norte. Innogy ganó con el parque eólico Kaskasi de 325 MW e Iberdrola ganó dos proyectos en el Mar Báltico.

El consejero delegado de WindEurope, Giles Dickson, dijo: “Estos resultados muestran que las ofertas a prima cero son posibles para algunos promotores en algunos mercados bajo ciertas condiciones, pero que no son la norma. Pero también muestran que la energía eólica marina está manteniendo los bajos costes que ha logrado en los últimos dos años“.

Alemania apunta a 15 GW de energía eólica marina para 2030. Pero para cumplir su objetivo para 2030 de un 65% de electricidad renovable, necesitará más energía eólica marina que esa. Y estos resultados muestran que puede darse el lujo de obtener 20 GW. Tendrán que cumplir con sus planes de expansión de la red para acomodar estos mayores volúmenes a largo plazo. Pero los seis parques eólicos que ganaron esta última subasta pueden acomodarse dentro de la red existente“.

Es bueno ver una mayor expansión de la eólica marina en el Mar Báltico. El Báltico tiene vientos fuertes y estables, olas bajas, aguas poco profundas y distancias cercanas a la costa“.

Parque eólico de SGRE- SGRE wind farm

MAKE ha publicado una Nota de Investigación que examina las fuerzas dinámicas que afectan los cambios en las cuotas de mercado de los fabricantes de aerogeneradores a nivel mundial y analiza a los principales fabricantes en los principales mercados eólicos. Entre los principales hallazgos de este informe se encuentran los siguientes.

Siemens Gamesa Renewable Energy (SGRE) estableció un récord anual para la nueva capacidad a nivel mundial, ya que obtuvo el primer lugar en el ranking mundial. El ranking confirma la ventaja de la fusión, ya que combina la competitiva plataforma de aerogeneradores terrestres de Gamesa, particularmente en los mercados emergentes, con el dominio de Siemens en el sector eólico marino. SGRE ganó la mayoría de las clasificaciones subregionales, lo que ayudó a impulsarlo por delante de Vestas en el ranking mundial.

La diversificación regional y el sector eólico marino tuvieron una influencia significativa en el posicionamiento global en 2017. SGRE y Vestas instalaron capacidad en casi el doble de países que el siguiente fabricante del ranking, lo que contribuyó al menos a un 5% de ventaja para cada fabricante sobre el resto.

Un sector eólico marino cada vez más competitivo marcó la diferencia para SGRE, y también permitió a MHI Vestas romper los rankings mundiales, por primera vez para un fabricante exclusivo de eólica marina. Senvion y varios fabricantes chinos, como, SEwind, también aprovecharon el crecimiento en el sector eólico marino para consolidar sus posiciones anuales.

La demanda de aerogeneradores de 3 MW o más influyó en el posicionamiento mundial en 2017. Esta tendencia fue más impactante en las Américas, con Vestas y Nordex Group sacando partido de modelos competitivos de 3 MW, pero también afectó a las clasificaciones en Europa, África y la región Asia-Pacífico, excluyendo China.

Una disminución significativa en la capacidad anual en China, respecto al año anterior, afectó el posicionamiento de los fabricantes chinos de aerogeneradores, solo Goldwind se situó en el top 5 mundial. La falta de una estrategia global expuso a los fabricantes chinos de aerogeneradores a la desaceleración del mercado en China, erosionando su cuota de mercado anual y permitiendo a los fabricantes de aerogeneradores occidentales controlar las 15 principales cuotas de mercado.

 

El operador estatal polaco del sistema de transmisión, PSE, ha determinado que se podrían instalar 4 GW de eólica marina en el mar Báltico polaco para 2026/27 y hasta 8 GW a largo plazo.

Polonia se ha convertido en un jugador importante en la cadena de suministro de la energía eólica marina en los últimos años, con grandes inversiones en la fabricación de cimentaciones de aerogeneradores y grúas y buques tipo jack-up utilizados en operaciones de instalación y mantenimiento. La industria eólica polaca emplea actualmente a 12.000 personas. Este número crecerá significativamente con el desarrollo de un mercado eólico marino nacional.

El consejero delegado de WindEurope, Giles Dickson, ha declarado: “Este compromiso para ayudar a poner en marcha el mercado eólico marino de Polonia es una excelente noticia. Después de un período de estancamiento en de la eólica terrestre Polonia volverá a colocarse en el mapa de la energía eólica europea. Ayudará a diversificar el mix energético de Polonia y respaldará un mayor crecimiento y creación de empleo en la exitosa cadena de suministro eólica marina polaca. Las habilidades y experiencia industrial necesarias para cumplir con estos volúmenes ya existen. Es estupendo que el operador de la red de transmisión haya confirmado que la red eléctrica polaca también puede apoyarlos. El Mar Báltico ofrece un enorme potencial de crecimiento para la energía eólica marina y es muy bueno ver que Polonia se está preparando para cumplir su parte“.

Según Janusz Gajowiecki, presidente de la Asociación Polaca de Energía Eólica (PWEA): “Hoy las empresas polacas podrían entregar hasta el 50% de los componentes necesarios para construir parques eólicos marinos. PWEA ha identificado a casi 80 empresas que podrían ofrecer los productos y servicios necesarios, desde el diseño y planificación de parques eólicos marinos, producción e instalación de componentes de aerogeneradores e infraestructura de conexión hasta la operación y el mantenimiento de parques eólicos marinos“.

Iberdrola aplicará en su parque Wikinger el proyecto ROMEO, una de las iniciativas de I+D más ambiciosas del momento en la mejora de la eficiencia en el sector de la energía eólica marina.

Wikinger será el escenario de pruebas de uno de los tres proyectos piloto que se desarrollarán en el marco de esta iniciativa, que está siendo financiada por el Programa Horizonte2020 de la Unión Europea y liderada por Iberdrola.

El parque de Wikinger, con un total de 350 MW de potencia instalada, será capaz de suministrar energía renovable a unos 350.000 hogares, cuyo consumo equivale a más del 20% de la demanda de energía del estado de Mecklemburgo-Pomerania Occidental, donde está ubicado el parque.

Con una inversión cercana a los 1.400 millones de euros, Wikinger evitará emitir a la atmósfera casi 600.000 toneladas de CO2 al año. Durante la construcción del parque se fijaron al lecho marino 280 pilotes construidos por la empresa asturiana Windar. Asimismo, los 70 jackets (cimentaciones) fueron fabricados por la española Navantia, en los astilleros de Fene, en Coruña y por el empresa danesa Bladt, en Lindo, Dinamarca. En cuanto a las turbinas, de 5 MW de potencia unitaria, modelo AD 5-135, fueron desarrolladas por Siemens Gamesa en sus plantas de Bremerhaven y Stade en Alemania.

Una apuesta por la energía eólica marina

El proyecto ROMEO, que arrancó en junio de 2017, tiene como misión reducir los costes de operación y mantenimiento en los parques eólicos marinos (offshore) por medio de estrategias y sistemas de monitorización avanzadas, así como analizar el comportamiento de las turbinas eólicas en tiempo real.
El consorcio del proyecto, compuesto por compañías y entidades europeas, que cubren toda la cadena de valor del sector, trabaja en el desarrollo de una plataforma analítica y de gestión que permitirá mejorar el proceso de toma de decisiones con el fin de facilitar la evolución de las estrategias actuales de Operación y Mantenimiento (O&M) basadas en correctivos a novedosas estrategias basadas en el estado real y de degradación de los componentes de las principales estructuras del parque.

Asimismo, Romeo desarrollará una plataforma centrada en la nube y el Internet de las Cosas que albergará modelos para diagnosticar y predecir los fallos de los sistemas. Esta plataforma permitirá comprender mejor el comportamiento en tiempo real de los principales componentes de los aerogeneradores en operación y su estado actual. Con este sistema se podrá extender su vida útil y se reducirán sus costes de operación y mantenimiento.

Las innovaciones del proyecto serán probadas también en los parques eólicos de Teeside, ya en funcionamiento y en East Anglia 1, este último propiedad también de Iberdrola.

El proyecto ROMEO, que finalizará en el año 2022, está constituido por un consorcio compuesto por 12 entidades, procedentes de 6 estados miembros de la UE y un país asociado. Además de Iberdrola Renovables Energía, que lidera el proyecto, el consorcio incluye a grandes empresas (Electricité De France, ADWEN, Siemens Gamesa, RAMBOLL, IBM Research Zurich, INDRA, BACHMANN Monitoring), pymes (LAULAGUN Bearings, UPTIME Engineering, ZABALA Innovation Consulting), y la Universidad de Cranfield.

Según las estadísticas anuales de la eólica de WindEurope, Europa instaló 16,8 GW (15,7 GW en la UE) de capacidad bruta adicional de energía eólica en 2017, marcando un año récord en instalaciones anuales. Con una capacidad instalada neta total de 169 GW, la energía eólica sigue siendo la segunda forma más grande de capacidad de generación de energía en Europa, acercándose a las instalaciones de gas.

Las nuevas instalaciones de parques eólicos aumentaron un 20% en 2016 y superaron el récord anterior de 12,8 GW de 2015. La eólica terrestres creció en 12,5 GW y la eólica marina en 3,1 GW. 2017 fue un año récord para ambas, las instalaciones terrestres crecieron un 9% mientras que las instalaciones marinas crecieron un 101% en comparación con 2016.

Siete Estados miembros de la UE registraron un año récord en nuevas instalaciones de energía eólica: Alemania (6,6 GW), Reino Unido (4,3 GW), Francia (1,7 GW), Finlandia (577 MW), Bélgica (476 MW), Irlanda (426 MW) y Croacia (147 MW). Alemania instaló la mayor capacidad de energía eólica en 2017, con el 42% de las nuevas instalaciones totales de la UE y registró el mayor aumento anual, del 16% al 20%, de la energía eólica en su demanda de electricidad. Alemania sigue siendo el país de la UE con la mayor potencia instalada de energía eólica, seguida de España, Reino Unido y Francia. 16 países de la UE tienen instalado más de 1 GW de energía eólica. Nueve de ellos tienen más de 5 GW instalados. Dinamarca es el país con la mayor participación de la energía eólica en su demanda de electricidad con un 44%.

Que 2017 fuese un año récord refleja el hecho de que gran parte de los nuevos proyectos fueron acelerados para beneficiarse de las tarifas de inyección a red y otros viejos esquemas de apoyo mientras aún se aplicaban. Este fue especialmente el caso en Alemania con sus 5 GW de nueva eólica terrestres, y también es válido para Reino Unido y Francia.

La energía eólica instaló más que cualquier otra forma de generación de energía en Europa en 2017. La energía eólica representó el 55% de todas las nuevas instalaciones. La energía renovable en su conjunto representó casi todas las nuevas instalaciones eléctricas de la UE en 2017: 23,9 GW de un total de 28,3 GW. Las fuentes de energía convencionales como el fuelóleo y el carbón continúan desmantelando más capacidad de la que instalan. La capacidad de generación de gas que se desmanteló fue casi igual a la cantidad de capacidad puesta en marcha.

Las inversiones en energía eólica representaron el 52% de las nuevas inversiones en energía limpia en 2017, en comparación con el 86% en 2016. 2017 también fue un año récord para las nuevas inversiones en futuros parques eólicos. 11,5 GW de proyectos alcanzaron la decisión de inversión final: 9 GW en tierra y 2,5 GW en el mar. Pero el valor de estas inversiones, 22.300 M€ (14.800 M€ en tierra y 7.500 M€ en el mar) fue 19% menor que en 2016. Las reducciones de costes en la cadena de suministro de la industria eólica y el aumento de la competencia en las subastas, dieron a los inversores más capacidad por menos dinero.

Alemania fue el mayor inversor en 2017, generando una actividad de financiación total de 6.700 M€ para la construcción de nuevos parques eólicos en tierra y mar adentro. Esto representa el 30% de las inversiones totales de energía eólica realizadas en 2017. Reino Unido quedó en segundo lugar con 5.000 M€ o el 22% del total.

La potencia eólica total instalada en Europa asciende a 169 GW: 153 GW en tierra y 16 GW en alta mar. Alemania sigue siendo el país con mayor potencia eólica instalada (56 GW). Le siguen España (23 GW), Reino Unido (19 GW) y Francia (14 GW). Con una participación del 18%, la eólica sigue siendo la segunda forma más grande de capacidad de generación energética en Europa, acercándose al gas natural. La energía eólica generó 336 TWh en 2017, suficiente para cubrir el 11,6% de la demanda de electricidad de la UE. En Alemania, la eólica supuso un  20% de la potencia, un 44% en Dinamarca y un 24% en Irlanda y Portugal.

A pesar de las cifras sólidas, las perspectivas para la eólica a medio y largo plazo son inciertas. La transición a las subastas ha sido más complicada de lo esperado. Y es crucial que muchos gobiernos no tengan claridad sobre sus ambiciones para las energías renovables después de 2020. Los países deben comenzar a aclarar cuánta energía eólica que desean implementar en el futuro. Esto dará visibilidad a la industria, permitiéndo planificar anticipadamente y reducir costes, y permitirá que otros, como los operadores de sistemas de transmisión, planeen la construcción de la infraestructura necesaria,” dijo el CEO de WindEurope, Giles Dickson.

2017 fue un año récord para la energía eólica marina en Europa según las estadísticas publicadas por WindEurope. Europa instaló 3,1 GW de nueva eólica marina, marcando un nuevo récord: dos veces más que en 2016 y un 4% más alto que el récord anterior de 2015. Europa ahora tiene una potencia eólica marina total instalada de 15.780 MW. Esto corresponde a 4.149 aerogeneradores marinos conectados a la red en 11 países.

Europa añadió (netos) 560 nuevos aerogeneradores marinos en 17 parques eólicos marinos. Se completaron 14 nuevos parques eólicos marinos, incluido el primer parque eólico marino flotante del mundo, Hywind Scotland. Reino Unido y Alemania representaron la mayoría de ellos, instalando 1,7 GW y 1,3 GW respectivamente y se está trabajando en otros 11 proyectos en Alemania y Reino Unido.

El tamaño promedio de los nuevos aerogeneradores marinos instalados fue de 5,9 MW, un aumento del 23% respecto a 2016. Y el tamaño promedio de los nuevos parques eólicos marinos fue de 493 MW, un aumento del 34% respecto a 2016. La profundidad media en las zonas de instalación de los parques eólicos completa o parcialmente completados en 2017 fue de 27,5 m y la distancia promedio a la costa fue de 41 km.

Los factores de capacidad también están aumentando, los factores de carga anual de todos los parques eólicos marinos en Europa oscilan entre el 29% y el 48%. Hay proyectos en Europa que ya operan con factores de capacidad del 54% (Anholt 1, Dinamarca) o incluso del 65% (Dudgeon, Reino Unido).

Los monopilotes son la subestructura dominante con el 87% de la cuota de mercado. Las estructuras tipo jacket y de gravedad representan respectivamente el 9% y el 2% del total de las subestructuras instaladas. En 2017, se instaló el primer parque eólico marino flotante, lo que permitió a las subestructuras de boya flotante hacer su entrada al mercado.

Otros 11 parques eólicos marinos están actualmente en construcción y agregarán otros 2,9 GW. La cartera de proyectos debería darnos un total de 25 GW en 2020. Pero la energía eólica marina en Europa sigue estando muy concentrada en un pequeño número de países: el 98% se encuentra en Reino Unido, Alemania, Dinamarca, Holanda y Bélgica.

2017 también vio decisiones finales de inversión (FID) para seis nuevos proyectos eólicos marinos que se instalarán en los próximos años, con una potencia adicional de 2,5 GW. Estas inversiones suponen un total de 7.500 M€, y son inferiores a las inversiones en 2016, aunque reflejan el descenso de los costes. Además del hecho de que las nuevas inversiones aún podían recibir tarifas de alimentación en 2016. La transición al apoyo basado en el mercado (subastas) ha ralentizado las nuevas inversiones, entre otras cosas, hay un desfase entre ganar una subasta y confirmar una inversión. Las subastas realizadas en 2016 y 2017 deberían traducirse en decisiones finales de inversión por valor de 9.000 M€ en 2018.

Más allá de 2020, las cosas están menos claras. Mucho depende de los volúmenes eólicos marinos a los que se comprometerán los gobiernos en los Planes de Acción Nacionales de Energía y Clima para 2030 (NECAP).

Enfrentarse a los problemas de corrosión y desarrollar nuevos materiales en los sectores eólico marino y mareomotriz en toda Europa podría ahorrar hasta 84.000 M€ para los desarrolladores y crear hasta 82.000 M€ en oportunidades para la cadena de suministro para 2050, según dos nuevos informes.

Encargados por el Proyecto NeSSIE, los informes investigaron el potencial económico de las soluciones anticorrosión y el desarrollo de nuevos materiales en el mercado de las energías renovables en alta mar.

La corrosión es una preocupación importante para los desarrolladores de energía marina. Todas las estructuras marinas se enfrentan a problemas de corrosión que afectan a los costes de operación y mantenimiento (O&M) a lo largo del ciclo de vida global. En el caso de los parques eólicos marinos, los costes de operación y mantenimiento son típicamente de alrededor del 15 al 30% del ciclo de vida total, y los problemas de corrosión son un factor importante en estos costes.

Los informes descubrieron que según las estimaciones del despliegue renovable en el mar, las soluciones anticorrosión y los nuevos materiales podrían potenciar que los desarrolladores ahorren más de 16.000 M€ para proyectos de energía de las mareas y olas y más de 68.000 M€ de ahorro para proyectos eólicos marinos. Para la cadena de suministro anticorrosión, los mercados de energía de las mareas y olas podrían llevar a más de 25.000 M€s de proyectos en toda la UE para 2050 y más de 57.000 M€ para proyectos eólicos marinos.

Jan Reid, líder del equipo de energía y tecnologías limpias dentro de Scottish Enterprise, dijo: “Este trabajo inicial es realmente alentador. Podemos ver que hay un tremendo premio económico para la cadena de suministro extraterritorial de la UE al abordar este desafío y apoyar a la UE a descarbonizar el sector energético. La clave para desbloquear esta oportunidad es desarrollar proyectos de demostración en los que invertir y que demuestren las soluciones tecnológicas. Trabajando en conjunto con las partes interesadas, en NeSSIE estamos entusiasmados de participar en el desarrollo de proyectos de demostración de soluciones anticorrosión.”

Los informes contribuyen al objetivo general de NeSSIE de desarrollar tres proyectos de demostración de energías renovables marinas centrados en la corrosión y los materiales. Los proyectos utilizarán la cadena de suministro submarina existente de la UE y su conocimiento para desarrollar soluciones comerciales.

COMEVAL