New DNV research highlights 10 energy systems technologies that must work together to meet global decarbonization targets

Una nueva investigación de DNV destaca 10 tecnologías energéticas que deben trabajar juntas para cumplir con los objetivos globales de descarbonización

DNV has highlighted how 10 key energy transition technologies are expected to develop, compete, and interact over the next five years if global economies are to meet emissions reduction targets.

The Technology Progress Report, a new supplement to DNV’s annual Energy Transition Outlook, considers safety, efficiency and competitiveness as well as the technical capability of these technologies, to deliver the deep decarbonization the world is striving for.

The technologies that have the potential to decarbonize the world’s energy system are well known. The challenge lies in navigating how and when to implement these technologies, which are at different stages of maturity, and in managing how they interact and rely on one another. Understanding this will enable industry, governments, and those financing the transition to effectively prioritize their efforts, to achieve the emissions reductions required this year, next year, and every year through to mid-century.

The Technology Progress Report’s 10 areas of focus were identified with two main criteria – first their ability to achieve an observable shift in the energy system, based on how quickly it is being deployed and how much costs are expected to fall over the next five years. Second is how the technologies interact with each other, sometimes referred to as sector coupling. When several technologies overlap and co-operate, a step change which accelerates the uptake of new technologies can follow.

DNV’s technology analysis reaffirms that there is no “silver bullet” and that the world needs to act urgently on multiple fronts to reach net-zero by mid-century. These include growing electricity from renewables, further improvements in energy efficiency, and carbon capture and storage (CCS).

In energy production solar PV will grow with its progressing development, but will more and more be supplemented by floating wind, and waste-to-fuel and feedstock can help decarbonize hard-to-abate sectors.

The utilization of pipelines for low carbon gases, meshed HVDC grids, and new battery technologies are considered important to advance energy transport, storage and distribution.

Energy use considers the production of green hydrogen and scaling of CCS to effectively decarbonize manufacturing as well as energy production. It also looks at novel shipping technologies and the continued rise of electric vehicles and their integration with power grids.

Source: DNV