Solar and onshore wind leading as cheapest source of new bulk power

Every half year, BloombergNEF runs its Levelized Cost of Electricity (LCOE) analysis, a worldwide assessment of the cost competitiveness of different power generating and energy storage technologies – excluding subsidies. Falling technology costs means unsubsidised solar and/or onshore wind are now the cheapest source of new bulk power in all major economies except Japan, according to BloombergNEF’s ‘2H 2018 LCOE’ report. This analysis covers nearly 7,000 projects across 20 technologies and 46 countries globally.

These are the key, high-level results:

  • Solar and/or wind are now the cheapest new source of generation in all major economies, except Japan. This includes China and India, where not long ago coal was king. In India, best-in-class solar and wind plants are now half the cost of new coal plants.
  • The utility-scale PV market in China has contracted by more than a third in 2018 because of policy revisions in that country. This in turn has created a global wave of cheap equipment that has driven the benchmark global levelized cost of new PV (non-tracking) down to $60/MWh in 2H 2018, a 13% drop from the first semester of 2018.
  • BloombergNEF’s benchmark global levelized cost for onshore wind sits at $52/MWh, down 6% from its 1H 2018 analysis. This is on the back of cheaper turbines and a stronger U.S. dollar. Onshore wind is now as cheap as $27/MWh in India and Texas, without subsidy.
  • In most locations in the U.S. today, wind outcompetes combined-cycle gas plants (CCGT) supplied by cheap shale gas as a source of new bulk generation. If the gas price rises above $3/MMBtu, BloombergNEF’s analysis suggests that new and existing CCGT are going to run the risk of becoming rapidly undercut by new solar and wind. This means fewer run-hours and a stronger case for flexible technologies such as gas peaker plants and batteries that do well at lower utilization (capacity factor).
  • Higher interest rates in China and the U.S. over the past two years have put upward pressure on financing costs for PV and wind, but these have been dwarfed by lower equipment costs.
Fuente/Source: BloombergNEF. Para las plantas térmicas, la gama captura una variedad de factores de capacidad y costes e incluye un precio del carbono en el caso del carbón y el gas. Para los sistemas de almacenamiento más renovables, BNEF asume almacenamiento en baterías de iones de litio de cuatro horas y la gama captura la diversidad de factores de capacidad en el país, así como diferentes relaciones de capacidad entre el almacenamiento y el activo de generación (25% -100 %). Todos los LCOE son sin subsidios./ For thermal plants, the range captures a variety of capacity factors and costs and includes a carbon price in the case of coal and gas. For renewable-plus-storage systems, BNEF assumes a four-hour lithium-ion battery storage and the range captures the diversity of capacity factors in the country, as well as different capacity ratios between the storage and the generating asset (25%-100%). All LCOEs are unsubsidized.
Fuente/Source: BloombergNEF. Para las plantas térmicas, la gama captura una variedad de factores de capacidad y costes e incluye un precio del carbono en el caso del carbón y el gas. Para los sistemas de almacenamiento más renovables, BNEF asume almacenamiento en baterías de iones de litio de cuatro horas y la gama captura la diversidad de factores de capacidad en el país, así como diferentes relaciones de capacidad entre el almacenamiento y el activo de generación (25% -100 %). Todos los LCOE son sin subsidios./ For thermal plants, the range captures a variety of capacity factors and costs and includes a carbon price in the case of coal and gas. For renewable-plus-storage systems, BNEF assumes a four-hour lithium-ion battery storage and the range captures the diversity of capacity factors in the country, as well as different capacity ratios between the storage and the generating asset (25%-100%). All LCOEs are unsubsidized.
  • In Asia-Pacific, more expensive gas imports mean that new-build combined-cycle gas plants with a levelized cost of $70-117/MWh continue to be less competitive than new coal-fired power at $59-81/MWh. This remains a major hurdle for reducing the carbon intensity of electricity generation in this part of the world.
  • Short-duration batteries are today the cheapest source of new fast-response and peaking capacity in all major economies except the U.S., where cheap gas gives peaker gas plants an edge. As electric vehicle manufacturing ramps-up, battery costs are set to drop another 66% by 2030, according to BloombergNEF’s analysis. This, in turn, means cheaper battery storage for the power sector, lowering the cost of peak power and flexible capacity to levels never reached before by conventional fossil-fuel peaking plants.
  • Batteries co-located with PV or wind are becoming more common. BloombergNEF’s analysis suggests that new-build solar and wind paired with four-hour battery storage systems can already be cost competitive, without subsidy, as a source of dispatchable generation compared with new coal and new gas plants in Australia and India.

Source: BloombergNEF