Tags Posts tagged with "electrical power"

electrical power

0 4
Offshore wind East Anglia One

Iberdrola has hooked up the East Anglia One offshore wind farm to the British electricity grid. It is building the facilities in the North Sea, around 50 km from the coast of the county of Suffolk, in the United Kingdom, and it is scheduled to go into operation next year.

The first of 102 wind turbines, the so-called WTG E19, has already supplied clean power to the land substation in Burstall. Its subsidiary, ScottishPower Renewables, which installed 25 turbines on the site this summer, will gradually connect them to the grid.

With an investment of approximately 2.5 MM£ and covering an area of 300 km2, East Anglia One is one of the largest scale projects being developed by Iberdrola and the biggest renewable initiative ever developed by a Spanish company.

Once commissioned in 2020, it will be the world’s biggest wind farm, with an installed capacity of 714 MW that will supply 630,000 British homes with clean energy.

The construction of East Anglia One is driving the offshore power industry in Europe, providing jobs for more than 1,300 people in several countries – Spain, the United Kingdom, the Netherlands, the United Arab Emirates – and is crucial to several sectors, such as the naval industry. The project has been a great driving force in Spain, since Iberdrola has used local companies like Navantia, Windar and Siemens-Gamesa for the development of many of the essential components of the wind farm.

Technical specifications ofeast anglia one

  • 102 Siemens Gamesa wind turbines make up the wind farm, each with a capacity of 7 MW. Once installed, they will have a total height of 167 m.
  • A marine substation (Andalusia II), manufactured by Navantia in Puerto Real (Cádiz), will be responsible for receiving the electricity produced by the wind turbines and transforming the voltage so it can be sent to the coast through two undersea cables, each around 85 km long.
  • These cables are joined to a further six underground cables measuring around 37 km and running from Bawdsey to the new land-based transformer in Burstall, which connects the offshore wind farm to the national grid.
  • Of the 102 jacket-type foundations, Navantia has manufactured 42 in Fene (Spain) and Windar has built the pilot cables in Avilés (Asturias). The other 60 foundations were manufactured by Lamprell in the United Arab Emirates and by Harland & Wolff in Belfast.

 

Iberdrola, steadfast commitment to offshore wind power

Over the next few years, Iberdrola will redouble its investment in offshore wind production, developing a project portfolio with over 10,000 MW. This growth focuses on three main areas: the North Sea, the Baltic Sea and the United States.

Clean power generated by offshore wind farms are the cornerstone of the company’s strategy, which expects to allocate 39% of the 34 MM€ earmarked for the 2018-2022 period to this type of generation: 13.26 MM€.

The group is currently operating two offshore wind farms: West of Duddon Sands, which went into service in the North Sea in 2014, and Wikinger, in the German waters of the Baltic Sea, which has been operational since December 2017.

In the United States, Iberdrola is in the process of building the biggest offshore wind farm in that country: Vineyard Wind. Just off the coast of Massachusetts, it will produce 800 MW of power to cover the energy needs of a million homes.

In Germany, in April 2018, the company was awarded contracts to build two new plants in the Baltic Sea, with a total of 486 MW of power: Baltic Eagle and Wikinger South.

In addition to these new plants, the Sant Brieuc Wind Farm, which is located in French waters, is scheduled to be commissioned in 2022. It will have 496 MW of installed power and will be located just off the coast of French Brittany, 20 km offshore.

Once these projects are operating in late 2022, the company will have installed 2,000 MW of offshore wind power, after which it will add a further 1,000.

Iberdrola is seizing this excellent opportunity for growth, with ambitious objectives for new wind generation facilities in the United Kingdom and the United States for the next few years: 30,000 MW for 2030 in the former and 25,000 MW in the latter, each with different timelines.

Installed capacity of renewable power in Colombia is expected to rise from 2% in 2018 to 14% in 2025, with a further rise to 21% by 2030. Renewable capacity in the country is slated to increase fivefold to reach 5.9 GW at a compound annual growth rate (CAGR) of 24.4%. This growth can be attributed to new government policies facilitating funds for renewable energy projects, energy efficiency measures and announcement of renewable energy auctions in 2018, says GlobalData.

However, GlobalData’s latest report, “Colombia Power Market Outlook to 2030, Update 2019 – Market Trends, Regulations and Competitive Landscape, also reveals that the country’s coal-based capacity will increase by 43% between 2018 and 2030 to reach 2.4GW while gas-based power will contribute 14% of total capacity.

Renewable energy and energy efficiency projects will handle the demand side management in the near future. The country’s onshore wind capacity is expected to increase from 19.5 MW in 2018 to 3.4 GW in 2030, representing the country’s largest growth among its renewable sources. PV capacity is expected to reach 1.7 GW in 2030 from 172.6 MW in 2019 at 23% CAGR, while the biopower segment will see growth of 7% CAGR to reach 719 MW. To date, Colombia does not have any installed geothermal capacity but it is expected to have 50 MW installed by 2024, leading to 115 MW capacity in 2030 growing at 15% CAGR.”

Colombia’s Generation and Transmission Expansion Plan 2015-2029 is expected to accommodate high volumes of renewable energy in the near future. The anticipated grid expansion and modernization of 4.2GW to 6.7GW, which is aimed to support 1GW coal and 1.5 GW hydro, will involve huge investment in grid infrastructure industry. This, in turn, is likely to open up new markets for energy storage and energy efficiency systems to enable steady supply of power when adequate renewable energy is unavailable.

Aracati Park

The overall renewable power capacity in Brazil is expected to grow at a compound annual growth rate (CAGR) of 6% from 31 GW in 2018 to 60.8GW in 2030, according to GlobalData.

GlobalData’s latest report: “Brazil Power Market Outlook to 2030, Update 2019 – Market Trends, Regulations, and Competitive Landscape” reveals that increased renewable energy auctions, promotion of hybrid renewable energy projects and other government initiatives such as tax incentives, smart metering, renewable energy targets and favorable grid access policies for renewable energy are likely to result in renewable expansion by 2030.

Between 2019 and 2030, solar PV and onshore wind segments are expected to grow at CAGRs of 14% and 6%, respectively. The significant rise in these two technologies will result in renewable energy being the second largest contributor to the country’s energy mix by 2030.

The connection of over 25,000 power systems, mostly solar PV systems to the Brazilian grid in mid-2018 under the net metering scheme, further underpins the renewable growth pattern over the forecast period.

The main challenges for Brazil’s power sector are its overdependence on cheap hydropower for base-load capacity and lack of a robust power grid infrastructure. In 2018, hydropower accounted for 62.7% of the country’s total installed capacity. In case of a drought, depletion of dam reservoirs could result in power shortages and switching over to costly thermal power which will increase the electricity prices.

In the long term, hydropower capacity is expected to decline and be compensated with increased renewable power capacity. On the other hand, thermal and renewable capacities are slated to increase and contribute 28% and 18%, respectively of the installed capacity in 2030.

Brazil is moving towards a balanced energy mix as it prepares to double its non-hydro renewable power capacity by 2030. With an almost 10GW increase in thermal power capacity by 2030 compared to 2018, the country is on course to better manage peak demand, reduce dependence on hydropower and maintain a healthy grid.

Source: Globaldata

0 8

In a world first, Siemens Gamesa Renewable Energy (SGRE) has today begun operation of its electric thermal energy storage system (ETES). During the opening ceremony, Energy State Secretary Andreas Feicht, Hamburg’s First Mayor Peter Tschentscher, Siemens Gamesa CEO Markus Tacke and project partners Hamburg Energie GmbH and Hamburg University of Technology (TUHH) welcomed the achievement of this milestone. The innovative storage technology makes it possible to store large quantities of energy cost-effectively and thus decouple electricity generation and use.

The heat storage facility, which was ceremonially opened today in Hamburg-Altenwerder, contains around 1,000 tonnes of volcanic rock as an energy storage medium. It is fed with electrical energy converted into hot air by means of a resistance heater and a blower that heats the rock to 750°C. When demand peaks, ETES uses a steam turbine for the re-electrification of the stored energy. The ETES pilot plant can thus store up to 130 MWh of thermal energy for a week. In addition, the storage capacity of the system remains constant throughout the charging cycles.

The aim of the pilot plant is to deliver system evidence of the storage on the grid and to test the heat storage extensively. In a next step, Siemens Gamesa plans to use its storage technology in commercial projects and scale up the storage capacity and power. The goal is to store energy in the range of several gigawatt hours (GWh) in the near future. One gigawatt hour is the equivalent to the daily electricity consumption of around 50,000 households.

The Institute for Engineering Thermodynamics at Hamburg University of Technology and the local utility company Hamburg Energie are partners in the innovative Future Energy Solutions project, which is funded by the German Federal Ministry of Economics and Energy within the “6. Energieforschungsprogramm” research programme. TU Hamburg carries out research into the thermodynamic fundamentals of the solid bulk technology used.

By using standard components, it is possible to convert decommissioned conventional power plants into green storage facilities (second-life option). Hamburg Energie is responsible for marketing the stored energy on the electricity market. The energy provider is developing highly flexible digital control system platforms for virtual power plants. Connected to such an IT platform, ETES can optimally store renewable energy at maximum yield.

Source: Siemens Gamesa

The International Energy Agency’s latest and most comprehensive assessment of clean energy transition finds that the vast majority of technologies and sectors are failing to keep pace with long-term goals. Of the 45 energy technologies and sectors assessed in the IEA’s latest Tracking Clean Energy Progress (TCEP), only 7 are on track with the IEA’s Sustainable Development Scenario (SDS). The SDS represents a pathway to reach the goals of the Paris Agreement on climate change, deliver universal energy access and significantly reduce air pollution.

These latest findings follow an IEA assessment published in March showing that energy-related CO2 emissions worldwide rose by 1.7% in 2018 to a historic high of 33 billion tonnes.

Some clean energy technologies showed major progress last year, according to the new TCEP analysis. Energy storage is now “on track” as new installations doubled, led by Korea, China, the United States and Germany. Electric vehicles had another record year, with global sales hitting 2 million in 2018. China accounted for more than half of total sales.

Solar PV remains on track with a 31% increase in generation – representing the largest absolute growth in generation among renewable sources. But annual capacity additions of solar PV and renewable power as a whole levelled off in 2018, raising concerns about meeting long-term climate goals.

This year’s analysis expands coverage to include flaring and methane emissions from oil and gas operations, which are responsible for around 7% of the energy sector’s greenhouse gas emissions worldwide. Despite some positive developments over the past year, current technology deployment rates, policy ambition and industry efforts are still falling well short.

The buildings sector also remains off track, with emissions rising again in 2018 to an all-time high. This was the result of several factors, including extreme weather that raised energy demand for heating and cooling. Another concerning development was the slowdown in fuel economy improvements around the world as car buyers continued to purchase bigger vehicles.

Given the urgency and scale of actions needed for clean energy transitions around the world, this year’s TCEP features much greater emphasis on recommended actions for governments, industry and other key actors in the global energy system. The analysis also includes in-depth analysis on how to address more than 100 key innovation gaps across all sectors and technologies.

TCEP provides a comprehensive, rigorous and up-to-date expert analysis of clean energy transitions across a full range of technologies and sectors. It draws on the IEA’s unique understanding of markets, modelling and energy statistics to track and assess progress on technology deployment and performance, investment, policy, and innovation. It also draws on the IEA’s extensive global technology network, totalling 6,000 researchers across nearly 40 Technology Collaboration Programmes.

TCEP is part of the IEA’s broader efforts on tracking energy transitions and key indicators to help inform decision makers on where to focus innovation, investment and policy attention to achieve climate and sustainable development goals.

Source: IEA

Acciona will supply Telefónica with an estimated volume of renewable electricity of 345 GWh, i.e. 58% of the high-voltage energy measured with telemetry that the technology multinational will consume in Spain this year, and 23% of its total electricity consumption.

According to the contract awarded to Acciona, the company will supply 72 points located in large-scale data processing facilities, offices and other centres of Telefónica in Spain. It is the second successive contract for the sale of electricity to Telefónica awarded to Acciona, following the one signed for 2018.

Like all the energy marketed by Acciona, the electricity supplied to Telefónica will be certified 100% renewable by the Spanish National Markets and Competition Commission (CNMC). The use of clean energy will avoid the emission of 107,000 tonnes of CO2 to the atmosphere, based on the energy mix of Spain.

Teléfonica: Also 100% renewable in other markets

The multinational is already fully renewable in other markets such as Germany, Brazil and the UK. This means that it is making progress towards its objective of 100% in all countries by 2030, which will mean a saving of around 6% on its energy bill, equivalent to 1.4% of its present revenues.

Worldwide, more than 50% of the electricity Telefónica uses is clean. It has stabilized its consumption despite a growth in traffic of 107% in the last three years, improving energy efficiency by 52% in the process, and this has been achieved two years before the target dates. In other words, the company is more efficient and consumes greener energy every year. This has led to Telefónica being part of “Lista A” del CDP, an organism that selects leading companies in the management of climate change.

Acciona: The biggest marketer of exclusively renewable energy

Through this contract, Acciona strengthens its business of the sale of energy to large clients in the Iberian Peninsula market, where is it already the biggest supplier of exclusively renewable energy with over 500 clients and 2,700 supply points. The associated volume of energy was 5,900 GWh in 2018, 11.3% up on the previous year.

Among Acciona’s renewable energy clients in the Iberian market are, as well as Telefónica, reference companies in a range of sectors such as Unilever, Bosch, Adif, Inditex, Basf, RTVE, Kellogs, Merck, Bimbo, Roca, Aena, Heinz, Asics, BT, Agrolimen, Volkswagen and the Prado, Reina Sofía and Thyssen-Bornemisza museums.

Source: Acciona

0 0

A combination of high electricity tariffs, falling PV prices and a lack of reliability in the grid is spurring sales of on-site solar to business customers in Sub-Saharan Africa. This is the conclusion of a new report by research company BloombergNEF (BNEF), commissioned by responsAbility Investments AG, assessing the potential of commercial and industrial solar opportunities in the region.

The report entitled “Solar for Businesses in Sub-Saharan Africa” finds that the commercial and industrial (C&I) solar sector in Sub-Saharan Africa is growing not because of regulatory support – as has been the case in many developed economies – but because of economics. On-site solar power is cheaper than the electricity tariffs paid by commercial or industrial clients in 7 out of 15 markets in Sub-Saharan Africa (excluding South Africa) studied by BNEF.

While the market is still small, it has great potential. An immense energy deficit and crumbling infrastructure makes Sub-Saharan Africa fertile ground for solar. As of November 2018, developers built a record number of 74 MW serving business customers directly, offering them cheaper power than the grid. Kenya, Nigeria, and Ghana installed 15 MW, 20 MW, and 7 MW respectively as of November 2018.

BNEF_AFRICA

According to the authors, the financial sector has yet to take on a major role in providing funding for C&I solar systems. So far, most business customers have bought systems for cash, without using third-party finance. There are, however, big opportunities for specialized financiers in the region to do more.

responsAbility-managed funds have financed the off-grid solar sector in Sub-Saharan Africa for five years, focusing primarily on residential customers. The company expects solar to be increasingly deployed on C&I sites, where it often complements diesel power generation.

Electricity outages are commonplace across most of Sub-Saharan Africa. When the grid is out, customers must either shoulder high opportunity costs from lost sales or manufacturing output, or resort to much costlier backup power, usually from diesel. This is where financing solar installations can contribute to climate change mitigation by replacing fossil fuel.

responsAbility, in cooperation with the dedicated climate fund it manages, and the Swiss State Secretariat for Economic Affairs (SECO), commissioned BNEF to identify and assess potential target markets for C&I solar in Sub-Saharan Africa. Following a desk-based regional study that identified three high-priority markets, BNEF conducted interviews with 36 stakeholders in those markets. Overall, stakeholders are optimistic about the future and BNEF expects 2019 to be a record year for the C&I industry.

Source: BloombergNEF

0 1

Antonio Rodríguez Osuna, Mayor of Merida, and Luis Cid, OPDEnergy’s CEO, presented the details surrounding the PV plant denominated “La Fernandina”, whose construction shall start in the next few weeks in the municipality of Merida.

The PV plant will occupy an area of 100 hectares nearby the motorway of Alange and achieve a total power capacity of 50 MWp. The construction of La Fernandina will last for 9 months and require a total investment of 30 M€.

When in operation and connected to the grid at the end of 2019, La Fernandina will produce enough renewable energy to supply the equivalent of 26,000 households with electricity. According to parameters estimated and released by the Spanish Office for Climate Change (Oficina Española de Cambio Climático – OECC), such production will contribute to avoid the annual emission of 40,000 tons of CO2 into the atmosphere.

During the press conference from the city hall of Merida, the Mayor Antonio Rodríguez Osuna thanked the company for having chosen Mérida “for such important project that supposes a large investment and creation of employment, in addition the activity will generate an important economic return for the city in the future”.

Luis Cid Suárez, the CEO of OPDEnergy, which is specialized developing renewable energy assets in all stages (development, financing, construction and operation & maintenance), has publicly acknowledged the commitment deployed by the local authorities towards the production of renewable energy, “a commitment that made possible the project we are proud to present today”.

According to Cid, the construction of the plant will result in the creation of 200 new jobs at its peak. In addition, during the construction phase, the company will subcontract supporting services from local companies and the local community. In the Spanish Autonomous Community of Extremadura, OPDEnergy developed and built 8 solar photovoltaic plants with a total capacity of 32 MWp throughout its 13 years of activities.

Moreover, the company has projects to develop and invest in 4 new renewable assets in the region, amounting to over 500 MWp of capacity.

300 MWp in Spain in 2019

La Fernandina is one of the seven solar PV assets that OPDEnergy foresees to construct in 2019 in Spain. In total, these assets shall achieve a total capacity of 300 MWp. Therefore, besides the project presented in Merida, the international power company will bring to life 100 MWp in Andalusia – a 50 MWp plant in Puerto Real, Cadiz, and another 50 MWp plant in Alcalá de Guadaira, Sevilla –and 148 MWp in Aragon – through four assets amounting to 61 MWp in Zaragoza and 87 MWp in Teruel.

Outside Spain, the company will develop and construct a substantial amount of renewable energy projects across Mexico, Chile and the US, achieving the construction of a total of 500 MWp by the end of the year. Finally, and in line with its strategic focused on portfolio diversification, the company has under its pipeline the development of 5,000 MW (5 GW).

Source: OPDEnergy

0 0

Acciona has been awarded the contract to supply electricity to the Bosch Group in Spain and Portugal for 2019−2021 (inclusive) for a volume of over 480 gigawatt-hours (GWh) for the entire period.

Under the contract, one of the biggest for the sale of energy to corporate clients signed to date by Acciona, the company will supply energy with a 100% renewable guarantee to all the centres of the Bosch Group in the Iberian Peninsula, where the technology and services multinational has more than 20 facilities and around 13,000 employees.

The use of the renewable energy arising from the contract will avoid the emission of more than 460,000 tonnes of CO2 to the atmosphere from coal-fired power stations, the main cause of the greenhouse effect and associated global warming.

“It is great news that the Bosch Group has renewed its faith in Acciona as a supplier of renewable energy by extending the scope of our cooperation to Portugal. We are delighted to contribute to its objectives of sustainability and bringing stability to its energy costs”, said Acciona Energía Energy Management Director Santiago Gómez Ramos.

6 TWh in Spain and Portugal

The operation strengthens Acciona’s growth in the marketing of renewable energy to corporate clients, in line with global trends in the sector.

Acciona supplies (or has supplied) renewable energy to more than five hundred companies and institutions from a wide range of sectors in Spain and Portugal, among them Telefónica, Unilever, Adif, Navantia, RTVE, Agrolimen, Freixenet, Bimbo, Merck and Basf, plus the El Prado, Reina Sofía and Thyssen-Bornemisza museums. The company expects to reach 6 terawatt-hours (TWh) this year, contracted with major clients in the Iberian market.

Its consolidated business in the Spanish market, where it is the first marketer of exclusively renewable energy and the leader in absolute terms after the conventional utilities, has been added to since 2015 through expansion into Portugal, with clients such as Vidrala, Repsol Polímeros, Volkswagen, Roca, Danone, Philip Morris or Hutchinson.

0 0

Ingeteam has announced that a recent in-house R&D study allowed them to work out the optimal electrical power conversion designs for offshore wind turbines up to 15 MW. The research, taking into account the complex set of parameters at play in LCoE, enabled the company to develop a Medium Voltage Power Converter based on the parallelization of several conversion lines (core product) reaching up to the 15 MW power range. Ingeteam claims that its new design is the ideal solution for scaling up offshore turbine platforms and will present its converter and the associated research at the Global Wind Summit in Hamburg next month.

Ingeteam’s R&D study assessed the complex relationship between the cost of the power conversion stage and its reliability and maintainability metrics (MTBF and MTTR respectively[1]) to determine the lowest LCoE. Based on the study findings, Ingeteam found that the optimal solution for the offshore wind market is a Medium Voltage Power Converter based on the parallelization of several conversion lines (core product) reaching up to the 15 MW power range. The power conversion line designed by Ingeteam offers the best investment/availability ratio, with efficient operation, easy maintenance and improved reliability.

With current technologies, as well as the expected progress in materials and engineering integration, we think that offshore wind turbines will continue to rapidly increase their power capacity. Therefore, a robust medium voltage power converter has been developed focusing on a market that demands a low Levelized Cost of Energy (LCoE) without compromising quality or performance in wind turbine platforms that are continuously scaling up“, commented Ana Goyen, Director of Ingeteam Wind Energy.

Ingeteam’s new core product is capable of reaching the 15 MW power range and has been conceived considering the modularity of the system as a key feature. It therefore allows multiple solutions depending on customer requirements regarding the integration in the wind turbine. The design of the converter offers maintenance friendly characteristics with front access and withdrawable main components that directly contribute to minimize the OPEX related to the service of the wind turbine.

This medium voltage converter has been specially designed for the offshore market with fully enclosed cabinet and a liquid cooling system that guarantees the safe operation of the converter even in harsh environments. With efficiencies higher than >98% at rated operating conditions, the proposed solution contributes significantly to minimize the production losses of the wind turbine.

Ingeteam has developed the control algorithms of its full power converters to guarantee the fulfillment of the most demanding grid codes, such as, German EON-2006 and Indian CERC-CEA. Additionally, country-specific power quality requirements are fulfilled by applying advanced modulation strategies. Ingeteam’s medium voltage converter solution is able to control the torque of different types of generators (IG, PMG or EESG) with the highest performance dynamics but always remaining within winding and bearing limits. Finally, the control algorithms can be adapted to operate with single and multiphase stator generators in order to optimize the whole wind turbine solution.

[1] The availability depends on two metrics: Mean Time Between Failures (MTBF) and Mean Time Between Repair (MTTR). It grows with higher values of MTBF and lower values of MTTR. But there is also a direct relationship with costs as higher investments allow better materials or even the additions of redundancies, more advanced tools and optimal maintenance programmes.

Source: Ingeteam

COMEVAL
ELT
COFAST-PASCH
AERZEN
IMASA