Tags Posts tagged with "electricity"

electricity

Foundation of a wind turbine

GES, an integral supplier of engineering, construction and maintenance for renewable energy projects (wind, solar and hydroelectric) will build the Valdejalón wind portfolio consisting of 5 wind farms in Aragón, Spain. Once completed, the wind farms will have a total installed capacity of 231 MW. Construction is expected to be finalized in 2020 second quarter.

The project is divided into two phases: Valdejalón East which includes the wind farms El Cabezo (49 MW) and Portillo II Phase I (45.6 MW) and Phase II (38 MW), and Valdejalón West composed of Virgen de Rodanas I (49.4 MW) and Virgen de Rodanas II (49.4 MW).

The Valdejalón portfolio is fully owned by the Danish fund manager Copenhagen Infrastructure Partners P/S (CIP) through its fund Copenhagen Infrastructure III K/S (CI-III). CIP is a fund management company focused on energy infrastructure including offshore wind, onshore wind, solar PV, biomass and energy-from-waste, transmission and distribution, and other energy assets like reserve capacity and storage. The company operates in Europe, North America and Southeast Asia.

GES is responsible for the engineering, procurement and construction of the project. The company is already working in the detail engineering, and will be in charge of the complete BOP (Balance of Plant), both the civil work, with more than 60 km of roads and 61 foundations and platforms for the 85 m wind turbines to be installed in the park; and the electrical work, including the underground medium voltage network with more than 55 km of trenches and the 132 kV evacuation line of almost another 50 km, which will connect the two new substations to an existing interconnection substation.

Offshore wind East Anglia One

Iberdrola has hooked up the East Anglia One offshore wind farm to the British electricity grid. It is building the facilities in the North Sea, around 50 km from the coast of the county of Suffolk, in the United Kingdom, and it is scheduled to go into operation next year.

The first of 102 wind turbines, the so-called WTG E19, has already supplied clean power to the land substation in Burstall. Its subsidiary, ScottishPower Renewables, which installed 25 turbines on the site this summer, will gradually connect them to the grid.

With an investment of approximately 2.5 MM£ and covering an area of 300 km2, East Anglia One is one of the largest scale projects being developed by Iberdrola and the biggest renewable initiative ever developed by a Spanish company.

Once commissioned in 2020, it will be the world’s biggest wind farm, with an installed capacity of 714 MW that will supply 630,000 British homes with clean energy.

The construction of East Anglia One is driving the offshore power industry in Europe, providing jobs for more than 1,300 people in several countries – Spain, the United Kingdom, the Netherlands, the United Arab Emirates – and is crucial to several sectors, such as the naval industry. The project has been a great driving force in Spain, since Iberdrola has used local companies like Navantia, Windar and Siemens-Gamesa for the development of many of the essential components of the wind farm.

Technical specifications ofeast anglia one

  • 102 Siemens Gamesa wind turbines make up the wind farm, each with a capacity of 7 MW. Once installed, they will have a total height of 167 m.
  • A marine substation (Andalusia II), manufactured by Navantia in Puerto Real (Cádiz), will be responsible for receiving the electricity produced by the wind turbines and transforming the voltage so it can be sent to the coast through two undersea cables, each around 85 km long.
  • These cables are joined to a further six underground cables measuring around 37 km and running from Bawdsey to the new land-based transformer in Burstall, which connects the offshore wind farm to the national grid.
  • Of the 102 jacket-type foundations, Navantia has manufactured 42 in Fene (Spain) and Windar has built the pilot cables in Avilés (Asturias). The other 60 foundations were manufactured by Lamprell in the United Arab Emirates and by Harland & Wolff in Belfast.

 

Iberdrola, steadfast commitment to offshore wind power

Over the next few years, Iberdrola will redouble its investment in offshore wind production, developing a project portfolio with over 10,000 MW. This growth focuses on three main areas: the North Sea, the Baltic Sea and the United States.

Clean power generated by offshore wind farms are the cornerstone of the company’s strategy, which expects to allocate 39% of the 34 MM€ earmarked for the 2018-2022 period to this type of generation: 13.26 MM€.

The group is currently operating two offshore wind farms: West of Duddon Sands, which went into service in the North Sea in 2014, and Wikinger, in the German waters of the Baltic Sea, which has been operational since December 2017.

In the United States, Iberdrola is in the process of building the biggest offshore wind farm in that country: Vineyard Wind. Just off the coast of Massachusetts, it will produce 800 MW of power to cover the energy needs of a million homes.

In Germany, in April 2018, the company was awarded contracts to build two new plants in the Baltic Sea, with a total of 486 MW of power: Baltic Eagle and Wikinger South.

In addition to these new plants, the Sant Brieuc Wind Farm, which is located in French waters, is scheduled to be commissioned in 2022. It will have 496 MW of installed power and will be located just off the coast of French Brittany, 20 km offshore.

Once these projects are operating in late 2022, the company will have installed 2,000 MW of offshore wind power, after which it will add a further 1,000.

Iberdrola is seizing this excellent opportunity for growth, with ambitious objectives for new wind generation facilities in the United Kingdom and the United States for the next few years: 30,000 MW for 2030 in the former and 25,000 MW in the latter, each with different timelines.

Solarpack Corporación Tecnológica, SA (the “Company” or “Solarpack”) announces the closing of the acquisition of 90.5% of the solar photovoltaic (” FV “) projects Tacna Solar and Panamericana Solar (the “Projects”) with TAWA SOLAR FUND LP and the rest of the Projects’ shareholders, for US$ 51.5 million. With this milestone, the Company has become the owner of 100% of the Projects, since prior to the transaction it had 9.5% of the shares of the special purpose vehicles (“SPVs”) owning the assets: Tacna Solar SAC and Panamericana Solar SAC.

The Projects, which were developed and built by Solarpack in 2012 in association with Gestamp Asetym Solar (now X-ELIO), are located in southern Peru and have a total combined installed capacity of 43 MW. Both Projects have a long-term power purchase agreement (“PPA”) in US$ in place with the Peruvian Ministry of Energy, as a result of the first renewable energy resources (“RER”) tender held in Peru in 2010, and have more than 13 years of remaining contractual life under their respective PPAs.

The Projects have a long-term non-recourse project financing granted by Overseas Private Investment Corporation (OPIC), had a net financial debt of 113 MM$ as of February 28, 2019 and booked a joint EBITDA (Pro forma EBITDA 2018 considered the acquisition of the c. 13 MW in Spain as if it had happened on January 1, 2018, and was 25.2 MM€) of 21 MM$ in 2018.

In order to partly finance the acquisition of the Projects, Solarpack has disbursed a bridge loan granted by Banco Santander for 30 MM$. For the amortization of the bridge loan, the Company contemplates several options that may involve the entry of a minority partner in the Projects or, alternatively, maintaining full ownership of the assets.

The transaction is part of Solarpack’s strategy to selectively acquire operating assets that offer attractive returns and clear value creation opportunities from operational or other types of synergies. With this acquisition, the Company accelerates the original growth plan with which it went public in December 2018.

0 11

Soltec is offering 9 places on its Solteach On-Site programme, covering the design, installation and maintenance of PV installations. Based in Molina de Segura (Murcia), the leading company in the manufacture and supply of single-axis solar trackers, is offering professionals in telecommunications, electronics and electricity the most comprehensive training programme in the renewables sector.

The registration period is now open and applications are accepted up until 10 September. The 115-hour course, which starts on 30 September and runs for one month, includes 35 hours of theory and 80 hours of practical training. The training will take place at the offices of FREMM, the Regional Federation of Metal Companies of Murcia.

Soltec will offer the top performing students on the course an extendable internship contract with the option of a permanent contract of employment at the company. The students selected for the internship will start working at one of Soltec’s newly-commissioned plants before joining the department and in a position that best suits their profile and the needs of the company.

20160817122056

This programme sets out to give brightest professionals the opportunity to come into contact with and receive training from the renewables company of reference in Murcia that has demonstrated the best growth in recent years. The best students, whose profile meets the needs of the company, will have the chance to take up Soltec’s offer of a contract of employment.

At Soltec, we are very committed to job creation and quality training and, as such, we would like to give the best professionals in the sector the opportunity to receive training in renewable energy thanks to this comprehensive programme dedicated to PV installations”, comments Raúl Morales, company CEO.

ArcelorMittal Exosun, enterprise supplier of advanced solar tracking solutions for ground-mounted photovoltaic plants has successfully commissioned its trackers on Beryl Solar Plant located in New South Wales (NSW), Australia.

The 110.9MWp solar plant, built by Downer EDI Limited, is equipped with 8,607 Exotrack® HZ structures. Commissioning took place just 12 months after the contract was signed.
ArcelorMittal Exosun LCOE-friendly tracking technology significantly increases the plant’s energy yield and thereby contributes to providing clean and safe electricity to Australian households & public transportation. The majority of renewable electricity produced by Beryl is being used to meet the operational electricity needs of the Sydney Metro Northwest rail link.

Downer’s Executive General Manager for Renewables and Power Systems, Lena Parker said: “The project has been successful due to the collaborative efforts of all of our partners including ArcelorMittal Exosun.”

ArcelorMittal Exosun confirms it will be a major actor in the Australian solar market.

“Through this additional project in the country, our company consolidates its position in Australia’s fast-paced solar market” commented Antoine Gastineau, ArcelorMittal Exosun Business Development Director.

Source: ArcelorMittal Exosun

The in-depth study, which analyses hydrogen’s current state of play and offers guidance on its future development, is being launched by Dr Fatih Birol, the IEA’s Executive Director, alongside Mr Hiroshige Seko, Japan’s Minister of Economy, Trade and Industry, on the occasion of the meeting of G20 energy and environment ministers in Karuizawa, Japan.

Hydrogen can help to tackle various critical energy challenges, including helping to store the variable output from renewables like solar PV and wind to better match demand. It offers ways to decarbonise a range of sectors (including long-haul transport, chemicals, and iron and steel) where it is proving difficult to meaningfully reduce emissions. It can also help to improve air quality and strengthen energy security.

A wide variety of fuels are able to produce hydrogen, including renewables, nuclear, natural gas, coal and oil. Hydrogen can be transported as a gas by pipelines or in liquid form by ships, much like liquefied natural gas (LNG). It can also be transformed into electricity and methane to power homes and feed industry, and into fuels for cars, trucks, ships and planes.

To build on this momentum, the IEA report offers seven key recommendations to help governments, companies and other stakeholders to scale up hydrogen projects around the world. These include four areas:

  • Making industrial ports the nerve centres for scaling up the use of clean hydrogen;
  • Building on existing infrastructure, such as natural gas pipelines;
  • Expanding the use of hydrogen in transport by using it to power cars, trucks and buses that run on key routes;
  • Launching the hydrogen trade’s first international shipping routes.

 

The report notes that hydrogen still faces significant challenges. Producing hydrogen from low-carbon energy is costly at the moment, the development of hydrogen infrastructure is slow and holding back widespread adoption, and some regulations currently limit the development of a clean hydrogen industry.

Today, hydrogen is already being used on an industrial scale, but it is almost entirely supplied from natural gas and coal. Its production, mainly for the chemicals and refining industries, is responsible for 830 million tonnes of CO2 emissions per year. That’s the equivalent of the annual carbon emissions of the United Kingdom and Indonesia combined.

Reducing emissions from existing hydrogen production is a challenge but also represents an opportunity to increase the scale of clean hydrogen worldwide. One approach is to capture and store or utilise the CO2 from hydrogen production from fossil fuels. There are currently several industrial facilities around the world that use this process, and more are in the pipeline, but a much greater number is required to make a significant impact.

Another approach is for industries to secure greater supplies of hydrogen from clean electricity. In the past two decades, more than 200 projects have started operation to convert electricity and water into hydrogen to reduce emissions.

Expanding the use of clean hydrogen in other sectors – such as cars, trucks, steel and heating buildings – is another important challenge. There are currently around 11,200 hydrogen-powered cars on the road worldwide. Existing government targets call for that number to increase dramatically to 2.5M by 2030.

Policy makers need to make sure market conditions are well adapted for reaching such ambitious goals. The recent successes of solar PV, wind, batteries and electric vehicles have shown that policy and technology innovation have the power to build global clean energy industries.

WindEurope, Cefic (the European Chemical Industry Council) and EUCIA (the European Composites Industry Association) have created a cross-sector platform to advance novel approaches to the recycling of wind turbine blades.

In 2018 wind energy supplied 14% of the electricity in the EU with 130,000 wind turbines and this number will only grow in the coming decades. Wind turbines blades are made up of a composite material, which boosts the performance of wind energy by allowing lighter and longer blades.

In the next five years 12,000 wind turbines are expected to be decommissioned. Broadening the range of recycling options is critical for the industry’s development.

Wind energy is an increasingly important part of Europe’s energy mix. The first generation of wind turbines are now starting to come to the end of their operational life and be replaced by modern turbines. Recycling the old blades is a top priority, and teaming up with the chemical and composites industries will enable to do it the most effective way.

The chemical industry plays a decisive role in the transition to a circular economy by investing in the research and development of new materials, which make wind turbine blades more reliable, affordable and recyclable.

Learnings from wind turbine recycling will then be transferred to other markets to enhance the overall sustainability of composites.

Construction works from SENER power plant to Gondi Group.

Mexico City, Mexico, July 10, 2019 – The SENER engineering and technology group has signed a contract with Gondi, a leading Mexican group in the manufacture of paper for cardboard packaging, to build phase 1 of a steam and electricity service plant in Guadalupe Nuevo León (Mexico). The facility is designed to supply electricity, steam and cold water to the most modern paper plant in the country.

Phase 1 involves a steam plant with two boilers and an electric substation, which is scheduled to go into operation in early 2020. There is a future option to execute Phase 2 to develop the cogeneration scheme in 2021-2022.

Under this contract, signed as a turnkey or EPC (engineering, procurement and construction) contract for Phase 1, SENER will be responsible for the basic and detailed engineering, the overall procurement of materials, general project management, construction and start-up, as well as for training the operations personnel for two backup boilers.

SENER has extensive experience in the Mexican energy sector, where it has implemented 29 projects in the combined cycle and cogeneration, oil, gas and mining sectors, 16 of them of the EPC or turnkey variety. Specifically, in cogeneration, SENER led the construction of one plant for Cryonfra-Afranrent, two for the CYDSA group, a fourth for Alpek and a fifth, called TG-8 Madero, for Pemex, all of them as EPC construction contracts.

With offices in the country since 2006 and employing a multidisciplinary team of more than 400 Mexican professionals, SENER develops engineering and technology projects in the areas of Infrastructure and Transport (such as the passenger train between Toluca and México City, Guadalajara Metro Line 3, the General Hospital of Mexico and various works in Intelligent Transport Systems (ITS) throughout the country, for clients such as SCT, BANOBRAS and CAPUFE), and Renewables, Power, Oil & Gas, with, in addition to the aforementioned cogeneration plants, contracts such as the Agua Prieta II combined cycle plant, the La Cangrejera petrochemical plant and the diesel hydrodesulphurization units at the refineries in Tula and Salamanca for PEMEX, the Empalme I combined cycle plant and the compressor stations in Frontera and Los Ramones for Gasoductos del Noreste.

Source: SENER

The GoodWe inverters have been installed this year on a large 1MW project in the city of Buenos Aires, the capital of Argentina. The purpose of this project is to provide clean electricity from solar to an approximate of 1000 new house units, involving as well thermal and water pumping. This installation is part of a large urban improvement project in one historical neighborhood of low income of the Argentinian capital.

Due to a proved record of successful installations all over the world, the GoodWe proposal, consistent on more than 100 pieces of DT inverters of 10kW (suitable for use on commercial) were selected as the best choice in a fierce competition by one of the most reputed Argentinian EPC companies. This project is now owned by the city government and it was partly funded by large international organizations that typically have an extremely demanding criteria for the selection of suppliers. According to Wood Mackenzie, last year GoodWe became the 7th largest PV inverter supplier in the world, making the company a powerful candidate for this kind of projects.

GoodWe has accumulated a rich experience in projects aimed at alleviating poverty in isolated communities of China, in which the company inverters help local dwellers generate the electricity they consume and have additional income from the sale of surplus to the grid. This Argentinian project is technically different but it has the common element that solar is also a practical tool for raising the living standards of the population and in the process, making urban spaces more livable.

The area of the installation is located at a historical part of Buenos Aires where the population used to live in crowded spaces. It was not rare to see in this region illegal plugging into the grid, creating a significant burden for the local government. Thanks to the better housing that is being constructed along with these brand new GoodWe solar installations, the situation is starting to improve, allowing the inhabitants of that neighborhood to generate a large portion of the electricity they need. This project is a sort of pilot program that has the potential to be replicated in other countries.

The GoodWe DT model is an inverter specially designed for use on commercial and industrial rooftops but it is deployable in residential projects. The majority of the DT models installed on this project are of 10kWs capacity and the reasons behind their selection in Argentina have to do with their low weight, which is 30% lighter than equivalent products from competitors, and the high efficiency they can reach. The customer has also reported been impressed by the GoodWe’s SEMS monitoring system that allows operators to see in an accurate manner the power generated by the system.

Another happy aspect of this project is the fact that it is based in Argentina, a country that has experienced a remarkable growth in the demand for solar energy over the past years, consolidating its ranking as the fourth largest PV market in Latin America. The energy industry of Argentina has undergone profound adjustments which have encompassed the approval of new regulations that incentivize the expansion of solar. For GoodWe, Argentina has become a strategic market and the company remains committed to preserve the trust gained and to keep expanding the brand across the vast Latin American region.

Source: GoodWe

Despite significant progress in recent years, the world is falling short of meeting the global energy targets set in the United Nations Sustainable Development Goals (SDG) for 2030. Ensuring affordable, reliable, sustainable and modern energy for all by 2030 remains possible but will require more sustained efforts, particularly to reach some of the world’s poorest populations and to improve energy sustainability, according to a new report produced by the International Energy Agency (IEA) the International Renewable Energy Agency (IRENA), the United Nations Statistics Division (UNSD), the World Bank and the World Health Organization (WHO).

Notable progress has been made on energy access in recent years, with the number of people living without electricity dropping to roughly 840 million from 1 billion in 2016 and 1.2 billion in 2010. India, Bangladesh, Kenya and Myanmar are among countries that made the most progress since 2010. However, without more sustained and stepped-up actions, 650 million people will still be left without access to electricity in 2030. Nine out of 10 of them will be living in sub-Saharan Africa.

Tracking SDG7: The Energy Progress Report also shows that great efforts have been made to deploy renewable energy technology for electricity generation and to improve energy efficiency across the world. Nonetheless, access to clean cooking solutions and the use of renewable energy in heat generation and transport are still lagging far behind the goals. Maintaining and extending the pace of progress in all regions and sectors will require stronger political commitment, long-term energy planning, increased private financing and adequate policy and fiscal incentives to spur faster deployment of new technologies.

The report tracks global, regional and country progress on the three targets of SDG7: access to energy and clean cooking, renewable energy and energy efficiency. It identifies priorities for action and best practices that have proven successful in helping policymakers and development partners understand what is needed to overcome challenges.

Here are the key highlights for each target. Findings are based on official national-level data and measure global progress through 2017.

Access to electricity: Following a decade of steady progress, the global electrification rate reached 89 percent and 153 million people gained access to electricity each year. However, the biggest challenge remains in the most remote areas globally and in sub-Saharan Africa where 573 million people still live in the dark. To connect the poorest and hardest to reach households, off-grid solutions, including solar lighting, solar home systems, and increasingly mini grids, will be crucial. Globally, at least 34 million people in 2017 gained access to basic electricity services through off-grid technologies. The report also reinforces the importance of reliability and affordability for sustainable energy access.

Clean cooking: Almost three billion people remain without access to clean cooking in 2017, residing mainly in Asia and Sub-Saharan Africa. This lack of clean cooking access continues to pose serious health and socioeconomic concerns. Under current and planned policies, the number of people without access would be 2.2 billion in 2030, with significant impact on health, environment, and gender equality.

Renewables accounted for 17.5% of global total energy consumption in 2016 versus 16.6% in 2010. Renewables have been increasing rapidly in electricity generation but have made less headway into energy consumption for heat and transport. A substantial further increase of renewable energy is needed for energy systems to become affordable, reliable and sustainable, focusing on modern uses. As renewables become mainstream, policies need to cover the integration of renewables into the broader energy system and take into account the socio-economic impacts affecting the sustainability and pace of the transition.

Energy efficiency improvements have been more sustained in recent years, thanks to concerted policy efforts in large economies. However, the global rate of primary energy intensity improvement still lags behind, and estimates suggest there has been a significant slowdown in 2017 and 2018. Strengthening mandatory energy efficiency policies, providing targeted fiscal or financial incentives, leveraging market-based mechanisms, and providing high-quality information about energy efficiency will be central to meet the goal.

Source: IEA, IRENA, UNSD,World Bank, WHO

II premios ABB a la mejor practica en digitalizacion
COMEVAL