Tags Posts tagged with "high voltage"

high voltage

In order to make the energy transition possible, the Red Eléctrica Group, through its subsidiary Red Eléctrica de España, will invest a total of 3,221 million euros nationwide in the development of the high voltage transmission grid and in electricity system operation. This figure represents just over half (53%) of the total investment of 6 billion euros that the Company plans to make in the coming years as part of its new 2018-2022 Strategic Plan and that will focus on the integration of renewables.

Of the more than 3,000 million euros that have been earmarked for the energy transition, 1,538 million will be focused on the integration of clean energy (47%), 908 million on bolstering the reliability of the transmission grids and strengthening security of supply, 434 million will be allocated to continue implementing cutting-edge technological and digital tools, 215 million to boost energy storage projects and 54 million will be earmarked for energy control systems.

Both as the transmission agent and system operator, we work to respond to the needs of the energy transition, providing the technology that enables a smarter system in order to further guarantee the security and quality of supply with a higher share of intermittent renewable generation, and at the same time be able to manage an electricity system that is increasingly more complex and which makes it possible to integrate a greater number of energy sources distributed nationwide.

With regard to the development and strengthening of the transmission grid, the road map for 2019 onwards encompasses a great number of projects, many of which are already in the implementation phase. Many of them are key for achieving the European Union’s targets set out in their energy and environmental policy: for example, the interconnection with France across the Bay of Biscay in order to continue making progress towards reaching the cross-border interconnection capacity target with France set at 10%, or many other projects scattered nationwide focused on integrating new renewable generation and that seek to contribute to achieving a share of 32% of carbon-free energy in the generation mix by 2030.

2018 has seen the start of many of projects aimed at facilitating the energy transition. In this regard and with this objective in mind, the total investment made by the Company in transmission grid development in the last twelve months has amounted to 378.2 million euros.

In 2018, some particularly relevant projects were undertaken:

  • The Canary Islands Wind Energy Plan. This plan encompasses the development of the transmission grid in order to provide it with sufficient connection points and capacity to evacuate new wind energy generation.
  • The Arenal – Cala Blava – Llucmajor axis (Majorca). A project aimed at improving support for electricity distribution in the central area of the island of Majorca and facilitating the integration of renewables.
  • The San Miguel de Salinas – Torrevieja line (Alicante). This project helps provide better electricity supply to Torrevieja, as well as contribute to supporting the distribution network and increasing security of supply.
  • The Cañuelo – Pinar axis (Cádiz). This project helps support the electricity distribution network in the area and helps deal with the high level of demand coming from the Port of Algeciras and the Campo de Gibraltar.
  • The 400/220 kV La Farga substation and the associated incoming and outgoing feeder lines (Girona). This project helps strengthen the existing 220-kV grid by connecting it to the 400-kV grid in order to guarantee the security of supply and to support the electricity distribution network in the province of Girona.
  • The Arbillera line (Zamora). This project is designed to provide power for the high speed ​​train in the Zamora-Ourense railway section.
  • The incoming and outgoing feeder lines of the Moncayo substation (Soria). This project facilitates the evacuation of installed renewable generation capacity in the area and strengthens the guarantee of supply in the province of Soria.

2018 has also brought with it other relevant data that reflect the efforts being made by the Company to help make the energy transition a reality and, in particular, the integration of renewables nationwide. Thus, peninsular electricity generation that produces zero CO2 emissions reached a share of 62.5%, compared to 57% in 2017, representing an increase of 5.5 percentage points. This increase in clean generation resulted in 15% less emissions: going from 63.8 million tonnes in 2017 to 54.2 million tonnes in 2018. With regard to combined cycle and coal-fired technologies, these have decreased their share in the generation mix by 22% and 18%, respectively, compared to the previous year.

Nuclear energy (20.6%) continues to be ranked in the top position within the generation mix, nonetheless, in 2018 it was followed closely by wind energy (19%). As a whole, renewable generation has gone from 33.7% to 40.1% in the peninsular system, representing an increase of 6.4 percentage points. In the complete set of renewable energy technologies, wind represented 49%, hydro 34%, solar 11%, and the other renewable technologies represented 5%. All this data is taken from the ‘Spanish Electricity System – Preliminary Report 2018’ published by Red Eléctrica.

The five pillars of the 2018-2022 Strategic Plan

Facilitating the energy transition is just the first of the pillars of the new Strategic Plan of the Red Eléctrica Group. Although the Company is especially focused on this area, in keeping with its key role as transmission agent and operator of the electricity system, there are other goals that it is also undertaking: expanding the telecommunications business to become a strategic global telecom infrastructure operator; expanding its activity abroad in the electricity and telecommunications sectors; becoming a reference in technological innovation in the fields associated with the activities it carries out, and strengthening its operational efficiency and financial soundness.

In order to achieve these goals, the Company will invest a total of 6 billion euros over the next five years based on a balanced business model between the Company’s regulated activities and those operations subject to market risk and by diversifying business in a controlled manner, thereby boosting the expansion of operations in Spain as well as in the international arena. In addition, an improved business structure will be defined and implemented within the Group and the resources of its various subsidiaries will be strengthened.

This new Strategic Plan is the Company’s response to the challenges posed by the transformation of the production system model, marked by sustainability and the technological disruption. Electricity, telecommunications and talent are considered today as the new raw materials of economic development and are also the distinguishing features of Red Eléctrica’s new strategy.

Source: Red Eléctrica de España

0 0

Ingeteam is participating in the first bottom-fixed foundation offshore wind turbine prototype to be installed in Spain and the first of its kind in southern Europe. At the request of Estyco, the project leader, the Ingeteam business unit specializing in energy plant operation and maintenance, through its High Voltage department, was responsible for the supervision and analysis of the electrical work on the wind turbine. Specifically, Ingeteam worked on the connection of the medium voltage submarine cable for the transmission to land of the energy to be generated by the wind turbine and also on the manufacture of an exclusive part to secure the power cable. The prototype was partly funded by the European Union 2020 Horizon program.

Headed by the company Esteyco, within the framework of the Elican project, the 5 MW offshore wind turbine, built in the Port of Arinaga, is now moored off the coast of Jinamar, together with the Ocean Platform of the Canary Islands (Plocan). The energy produced will be transmitted to the Jinámar power station. This is groundbreaking technology for offshore renewables, permitting cost savings and making it possible to take its construction almost anywhere.

This project is yet another step forward in the positioning of the company in the offshore sector, complementing the activity underway in another European project in which Ingeteam is taking part as an expert in electrical systems and as a supplier of a converter for a 10 MW+ offshore prototype, also funded by the European Union. Furthermore, Ingeteam has just introduced a new range of 5 to 15 MW offshore converters, in order to achieve the cost reduction milestones demanded by the offshore wind power sector.

Source: Ingeteam

0 0

Es la batería de ión-litio más grande utilizada en una aplicación industrial en Australia hasta la fecha

Kokam Co., Ltd, provider of innovative battery solutions, has announced that it has successfully deployed for Alinta Energy, a leading Australian utility, a 30 MW/11.4 MWh Energy Storage System (ESS), the largest lithium ion battery deployed for industrial application in Australia. The ESS features Kokam’s high power Lithium Nickel Manganese Cobalt (NMC) Oxide battery technology, and is being used to improve the performance of an islanded high voltage network, which supplies power to major iron ore producers in the Pilbara region of Western Australia.

Hybrid natural gas/battery system increases islanded microgrid’s reliability, efficiency, sustainability

Operational since April 2018, the ESS consists of five 2.2 MWh Kokam Containerized ESS (KCE) units using Kokam Ultra High Power Lithium-ion NMC (UHP NMC) batteries. The ESS, in conjunction with Alinta Energy’s existing 178 MW open cycle gas turbine Newman Power Station, serves as a hybrid natural gas/battery energy generation and storage system. This hybrid system, along with a 220 kV high voltage power transmission system and high voltage substations, form an islanded microgrid that is used to power iron ore mines.

In addition to delivering Alinta Energy the ESS used for the project, Kokam, in partnership with EPC contractor UGL Pty Ltd, also served as the system integrator on the energy storage project. Kokam contracted ABB Australia to supply the ABB PowerStore™ “Virtual Generator” used to manage the microgrid. Adding the ESS to the microgrid will improve Alinta Energy’s ability to reliably deliver energy to the region’s iron ore producers.

Alinta Energy’s hybrid natural gas/energy storage system and islanded microgrid demonstrate how innovative technologies, combined with intelligent design, can improve power reliability for industrial customers, while also providing efficiency and sustainability benefits,” said Ike Hong, vice president of Kokam’s Power Solutions Division. “The Alinta Energy Newman Battery Storage Project provides an example of how new high power energy storage technologies enable both utility and industrial customers to build hybrid natural gas/battery systems that increase energy reliability, lower greenhouse gas emissions, and boost their bottom lines.

Growing utility, industrial market opportunities for UHP NMC battery technology

The Alinta Energy project provides an example of the growing number of utility and industrial market opportunities for Kokam’s UHP NMC battery technology. Designed for high-power energy storage applications, the UHP NMC battery technology can be used by utilities and other energy services companies for spinning reserve, frequency regulation, wind or large solar power system ramp rate control, Uninterrupted Power Supply (UPS), voltage support and other applications that require large amounts of power to be dispatched in seconds or less. In addition, the technology’s ability to quickly receive and dispatch very large amounts of power make it particularly well suited to be combined with natural gas, diesel and other power systems used to generate energy for industrial applications, where even a brief power disruption that shuts down mining, off-shore drilling or other industrial operations can result in costs totaling hundreds of thousands or even millions of dollars.

Kokam’s UHP NMC battery technology cost-effectively and reliably delivers the high power needed for these utility and industrial applications, thanks to the technology’s:

High discharge rate: UHP NMC battery technology has a max discharge rate of 10C, compared 3C for competitors. This enables UHPNMC batteries to dispatch more power when needed.
High energy density: The UHP NMC battery technology’s high energy density enables up to 3.77 MWh of energy storage to be installed in a 40 foot container, compared to 3 MWh of energy storage for standard NMC batteries, allowing more energy to be stored in a smaller space.
Long cycle life: UHP NMC batteries can last up to 10,000 cycles, compared to 3,000 – 5,000 cycles for standard NMC technologies, increasing the energy storage system’s expected life.
Improved heat dissipation: With a heat dissipation rate that is 1.6 times better than standard NMC technologies, UHP NMC batteries can be used at a higher rate for longer periods of time with no degradation in battery life or performance.

Source: Kokam

COMEVAL