Tags Posts tagged with "photovoltaic energy"

photovoltaic energy

Acciona has created a hub in its El Romero Solar plant (Atacama, Chile) to test new photovoltaic technologies that will improve the efficiency and performance of solar energy facilities.
The hub will focus on the mechanical and energy capacity of double-sided crystalline, split-cell and thin-film cadmium telluride (CdTe) technologies, all of them in the development phase, with the intention of shaping PV energy’s evolution. The solar modules have been produced by JA Solar and First Solar, and a variety of solar trackers will be used, manufactured by STI Nordland and Soltec.

The innovation center, in which two of the three tracker zones have already been installed, will have a power generation facility with a total capacity of 492 kWp (180 kW rated) consisting of 1,280 modules in three series of trackers connected to nine inverters. These will be assisted by other equipment to measure and monitor parameters such as incident and reflected solar radiation, ambient temperature or the production temperature of each kind of module, among others.

Unlike conventional solar modules, which only have photovoltaic cells on one side, the double-sided modules have cells on both sides of the panel to capture reflected solar radiation and increase output per surface unit occupied.

In split-cell modules each cell is divided into two parts. This reduces energy losses and improves the durability of the panel.

Finally, the thin-film modules are made from semi-conductive materials as alternatives to conventional crystalline silicon –such as cadmium telluride- that reduce both manufacturing costs and their carbon footprint during their working life.

Advanced technologies

Advanced technologies in photovoltaic solar are one of the main strategic approaches that guide Acciona’s innovation activities in the field of clean energies. One of the most innovative projects to date is the hybridization of organic photovoltaic panels in a wind turbine tower to power a turbine in the Breña wind farm (Albacete, Spain).

El Romero Solar is one of the biggest photovoltaic plants owned and operated by Acciona, with a capacity of 246 MWp. Located in the Atacama Desert in Chile, an area with some of the highest levels of solar radiation in the world, it produces energy equivalent to the consumption of around 240,000 Chilean households. Part of its capacity will be used to supply Google’s data center in the country.

LONGi Solar, a subsidiary of LONGi Green Energy Technology Co., Ltd, has achieved AA-Rating status, in the first quarterly release of PV-Tech’s new PV ModuleTech Bankability Ratings. LONGi Solar is one of only four PV module suppliers that qualifies within the top-performing rating category of AA across the sector.

The PV ModuleTech Bankability Ratings system is the solar industry’s first qualified tool that allows investors to understand and benchmark PV module suppliers; the analysis tracks a wide range of manufacturing and financial performance metrics, combining these to generate an overall bankability score between 0 and 10. Companies are then graded across nine risk categories from AAA-Rated (most bankable) to C-Rated (high risk).

The ratings system evaluates the investment risk (or financiability) rating for all PV module manufacturers, which combined with manufacturing capacity and financial health scores. At present, no company has been rated AAA and the Top 4 companies are all rated AA.PV-Tech and the PV ModuleTech event brand are recognized as the most credible, independent third-party research bodies covering the solar photovoltaic (PV) segment; specifically related to solar PV module suppliers.

“LONGi has always insisted on technological innovation and continuously increased R&D investment in the past years” said by Zhong Baoshen, Chairman of LONGi: “We always pay attention to the sustainable development of LONGi and maintain the financial stability and healthy. In the future, LONGi will continue to devote itself to providing customers with more reliable products and services.”

According to head of research at PV-Tech, Dr. Finlay Colville: “LONGi Solar has moved rapidly from being a CCC-Rated supplier in 2014 to one of the most bankable module suppliers featuring in the top-performing AA-rated category today. The company is on a trajectory to reach AAA-Rated status within the next 12 months, reflecting strong financial and manufacturing operations.”

Africa’s first 100% solar-powered desalination plant has produced 10 ML of fresh drinking water—with help from Danfoss APP pumps and iSave energy-recovery technology.

Developed by Mascara Renewable Water and Turnkey Water Solutions, the OSMOSUN® unit at Witsand—in South Africa’s Southern Cape—is powered solely by photovoltaics (PVs) producing 73kWh/day.

Taking water from the sea, the plant provides people in the historically drought-prone region with up to 100,000 L of safe, drinkable water per day.

The seawater reverse osmosis (SWRO) conversion process uses a highly efficient Danfoss APP pump to force water through a desalination membrane under high pressure. The water’s kinetic energy then drives the iSave 21 Plus energy recovery device.

Specifically developed for SWRO applications, the Danfoss iSave 21 Plus recovers kinetic energy that would otherwise be lost and returns it to the plant. The APP pump’s simple construction also makes it compact—with very little maintenance required—ideal for remote sites. What’s more, it’s oil free, so the risk of unplanned downtime is significantly reduced and there’s zero potential for water contamination.

Mascara’s OSMOSUN® system is already proven in other parts of the world (we have a more detailed story about its PV-powered SWRO plant in Abu Dhabi). At full capacity, it can produce approximately 300,000 L/day, using 400 m2 of PV panels.

Source: Danfoss

0 11

Soltec is offering 9 places on its Solteach On-Site programme, covering the design, installation and maintenance of PV installations. Based in Molina de Segura (Murcia), the leading company in the manufacture and supply of single-axis solar trackers, is offering professionals in telecommunications, electronics and electricity the most comprehensive training programme in the renewables sector.

The registration period is now open and applications are accepted up until 10 September. The 115-hour course, which starts on 30 September and runs for one month, includes 35 hours of theory and 80 hours of practical training. The training will take place at the offices of FREMM, the Regional Federation of Metal Companies of Murcia.

Soltec will offer the top performing students on the course an extendable internship contract with the option of a permanent contract of employment at the company. The students selected for the internship will start working at one of Soltec’s newly-commissioned plants before joining the department and in a position that best suits their profile and the needs of the company.

20160817122056

This programme sets out to give brightest professionals the opportunity to come into contact with and receive training from the renewables company of reference in Murcia that has demonstrated the best growth in recent years. The best students, whose profile meets the needs of the company, will have the chance to take up Soltec’s offer of a contract of employment.

At Soltec, we are very committed to job creation and quality training and, as such, we would like to give the best professionals in the sector the opportunity to receive training in renewable energy thanks to this comprehensive programme dedicated to PV installations”, comments Raúl Morales, company CEO.

Ingeteam has supplied 2 GW of power for solar PV plants throughout the world during the first half of 2019. This means that the company’s technology will be capable of supplying renewable energy to more than 400,000 homes once commissioned. In total, the Spanish company has reached a cumulative power of 14.5 GW throughout the world, which could satisfy the energy demand of about 3 M homes. In 2019, the key markets in which the company has grown its solar business are the Middle East region, Australia, Mexico, Spain, Chile and France.

Ingeteam closed 2018 with a new record of 3.85 GW supplied, for solar PV installations worldwide. So far this year, Ingeteam has already exceeded half this figure and the company is expected to pass the barrier of 4 GW in 2019.

The Ingeteam Group is one of the world’s leading suppliers of technological solutions for PV plants, control, monitoring and automation systems as well as energy storage systems. In this regard, this year Ingeteam has been entrusted with the supply, commissioning and provision of services for the largest solar PV project in Europe, now being built in the region of Murcia, Spain. The company was awarded the contract for the Mula project, which will achieve an installed power capacity of 500 MWp, to become the largest plant in Spain and Europe.

It is estimated that, by the end of 2019, the plant could be operating through the connection point at the El Palmar substation, a strategic hub for the power transmission grid in the region of Murcia.

Energy storage

Energy storage is a key sector for Ingeteam, where the company is positioning itself for the considerable development expected in the short and medium term for systems of this type, both at a residential level and also on a large scale. In fact, Ingeteam is marketing its battery converters for both segments and, in 2018, the company supplied this equipment primarily for hybrid systems that combine PV generation with energy storage. Sales in this sector were principally made to countries such as the United States, Spain, the United Kingdom, Australia, the United Arab Emirates, India, Poland and the French overseas departments.

Global leader in the provision of Operation & Maintenance Services

Furthermore, the company has achieved a new annual record for maintained power, exceeding 15 GW of renewable power across the globe, of which 6.1 GW correspond to solar power in more than 550 PV plants. This means that, at present, Ingeteam’s operation and maintenance division is strengthening its position as a global leader in the provision of O&M services at energy generation plants.

Acciona has begun construction work on the 64-MWp Usya photovoltaic plant, the third owned by the company in Chile. Acciona is currently constructing almost 400 MW in Chile in two wind farms and two photovoltaic plants, which will enter service in late 2019/early 2020.

 

The Usya plant, located in the municipality of Calama (Antofagasta region), will have a maximum capacity of 64 peak megawatts (MWp) -51 MW rated capacity- and an estimated annual emission-free energy generation of 146 GWh, equivalent to the electricity demand of around 70,000 Chilean households.

The new photovoltaic plant will be equipped with 187,200 modules mounted on fixed structures, which will be installed on a surface area of 105 hectares. The plant is expected to enter service in mid-2020.

Around 400 people will work in the project during the period of highest construction activity. After it enters service, the new plant will avoid the emission of around 141,000 T of CO2 to the atmosphere from coal-fired power stations.

Other plants in Chile

Acciona is currently building three other renewable energy facilities under its ownership in Chile, two wind farms in La Araucanía totalling 267 MW and a 62-MWp photovoltaic plant in Atacama, which will join the 291 MW already in service in the country.

The company’s construction effort will lead to a total of almost 700 MW of renewable capacity under its ownership in Chile by 2020, with an investment of around 1,000 M.

0 11

With a volume of more than 4 GW of capacity shipped in 2018 and more than 12 GW of total capacity installed all over the world, in 2018 GoodWe became the 7th largest supplier of PV inverters on a global scale. That is according to a recently released report by Wood Mackenzie and titled Global Solar PV inverter market: Market shares and shipment trends 2019.

This is not the first time that according to an authoritative international institution GoodWe makes it to the list of the largest suppliers of PV inverters (IHS and Bloomberg on previous years have also identified the company a major supplier).

According to the report: in 2018, the GoodWe shipments of PV inverters reached 4% of the global market share. In two large solar markets, Europe and Asia-Pacific, GoodWe maintained an outstanding performance: last year, GoodWe supplied 3% of the inverters acquired by the European market, which made the company the top 10 largest supplier of this continent. In Asia-Pacific, GoodWe reached a 5% of the market share, making othe company the 4th largest supplier, which is remarkable given the volumes involved and the size of the national markets of this region, that include the largest world markets of China and India and the sophisticated market of Australia.

The year of 2018 was very challenging for the Chinese solar industry, but GoodWe still managed to expand in the global market and the inclusion of our company on the Wood Mackenzie top ten list bears witness to those efforts. It is also worth mentioning that the more than 4 GW volume shipped by GoodWe last year was 35 times more than what we shipped in 2012 and more than double of what we shipped in 2016. The Wood Mackenzie report fully illustrates that despite the challenges of last year, GoodWe has managed to maintain a remarkable high rate of annual growth that since 2012 has averaged 100%.

Across the world the solar industry is experiencing a fresh wave of growth and the demand has continued to expand and diversify. The quality expectation of consumers around the world has become more complex and the inverter suppliers are forced to innovate and deliver value to meet the rising demand and excel amid fierce competition. GoodWe’s competitors are formidable companies and being part again of the big leagues is not a small feat in these times of rapid evolution.

The continuation of GoodWe on the selected group of the world top largest PV inverter suppliers rests on several factors. Three of them stand out: GoodWe has understood that service is of critical importance to win customers trust and satisfaction and as such it has set up local service teams in Europe, Latin America, India, Australia, Korea and other markets. The expansion seen over the past year of the GoodWe businesses across the world is just a reflection of those efforts. Another factor is that GoodWe is distinguished by its capacity to react quickly to the customer demand, something that has been allowing the company to improve its products over significantly short periods of time. Last but not least, it is worth mentioning the wide and expanding portfolio of GoodWe products that allow the company to cater to different market segments and within these, meet the quality expectations of different kinds of customers.

Source: GoodWe

European electricity markets

Since April 1, prices in Europe have had certain stability. The rise in the CO2 emission price was offset by lower gas and coal prices and also by the slight decrease in electricity demand due to the better weather conditions in spring, with somewhat higher temperatures and more hours of sunshine in this 40-day period. The price fluctuations in this period are mainly due to variations in wind energy production, especially in Germany and Spain, which are the European leaders generating energy with this technology. In the case of Germany, prices could have been stable at 40 €/MWh but when there was a lot of wind they fell below this value, even reaching negative values on April 22 at 14 €/MWh. In the Spanish electricity market, fluctuations in wind energy production caused prices in the band between 40 €/MWh and 60 €/MWh. Also in this period of 40 days there were fluctuations in temperature and in solar energy production.


Electricity futures

The prices of European electricity futures for the third quarter of 2019 increased in most markets between 0.3% and 1.6% on Friday, May 10, compared to Friday of previous week. In the case of the OMIP market of Spain and Portugal, as well as the MTE market operated by GME, they remain unchanged, while the UK futures decreased in both the ICE and EEX markets.
In the case of futures for 2020, the increase was more widespread between 0.5% and 1.4%. Only the MTE market operated by GME remained unchanged and the UK’s ICE and EEX markets declined, as did the future for the third quarter of this year.

Wind and solar energy production

In the second week of May, the wind energy production had an increase in the main European markets except in Germany with a drop of 3.3%. The increase in France was 58%, in Portugal 99%, in Spain 36%, and in Italy 37%.
For the current week, the third of May, a decline in wind energy production is forecasted after the rise of the previous week. The most pronounced fall is expected in Italy and Portugal, somewhat less in Spain and France, and even a slight increase in Germany.

As for solar energy production, which includes photovoltaic and solar thermal technologies, during the second week of May fell by 4.3% in Germany, while in Spain the fall reached 20% with respect to the previous week. For its part, in Italy the previous week registered an increase of 5.3% in the solar energy production.
For the current week it is expected a decrease in solar energy production in Italy of about 20%, while in Germany and Spain the trend is expected to be bullish between 15% and 20%.

 

Source: AleaSoft

0 22

China’s Huawei Technologies Co Ltd has established a team in Spain for its solar string inverter division, Huawei FusionSolar, in a bid to seize opportunities in the country’s growing PV market. Huawei has said that Spain would be the priority market for the business unit, which already has a team of 15 in the sales and pre-sales departments.

Last year, Spain installed 261.7 MW of new PV capacity, a 94% increase compared to the previous year and up by 500% compared to the 2016 installations, Huawei said citing data by the Spanish Photovoltaic Union (UNEF). The Spanish PV market could grow up to, or even surpass, EUR 5 billion (USD 5.7bn), the Chinese company added.

In 2018, engineering, procurement and construction (EPC) firm Grupotec selected Huawei as the supplier of string inverters for a series of Spanish solar projects with a combined capacity of 168 MW. Huawei expects to negotiate new contracts in Spain throughout the year eyeing an order volume of more than 3 GW. It also intends to grow its business through government-awarded projects and power purchase agreements (PPAs) with private companies, as well as offer solutions for self-consumption schemes.

Powertis, developer of large-scale PV projects in Europe and Latin America, will develop 2 GW of solar PV over the next three years between Brazil and Spain, 1 GW per country. Headquartered in Madrid and less than a year old, Powertis has secured power purchase agreements (PPAs) for 1 GW in Brazil. In addition, Powertis is entering into the Spanish market where offers turnkey services ranging from feasibility study to project financing.

In less than 15 seconds, enough energy from the sun reaches the Earth to keep the world running using clean energy. For this reason, we are convinced that the future will be solar. At Powertis, we focus on large projects that use the latest technology, minimizes the cost of solar, and let us negotiate sophisticated bilateral contracts, with the ultimate goal of offering a guaranteed and sustainable return to our investors,” says Pablo Otín, CEO of Powertis.

The construction of the first projects in Brazil will start in the first quarter of 2020 and the entire portfolio, which exceeds 1 GW, will be connected to the grid before December 2021. “Our main goal is to establish Powertis as the leading company in the bilateral market in Brazil”, states Otín. He also adds that this country, together with Spain, are two of the most active regions in the global PV market in bilateral PPAs. “We are taking advantage of these opportunities to showcase our team’s unique knowledge when it comes to contract and finance this type of projects.

Source: Powertis

II premios ABB a la mejor practica en digitalizacion
COMEVAL