Tags Posts tagged with "potencia"

potencia

0

Rolls-Royce ha firmado un contrato con C-Energy para ampliar la potencia instalada de su central eléctrica con otros 23 MWe. La entrega incluye dos grupos electrógenos a gas basados en el nuevo motor de Rolls-Royce de velocidad media de 20 cilindros en V, B36:45, presentado en PowerGen Asia en septiembre de este año. Rolls-Royce también proporcionará servicio a largo plazo para los nuevos motores.

La nueva serie de motores B36:45 establece un nuevo estándar en potencia y eficiencia con un consumo de combustible y emisiones de NOx, CO2, SOx y partículas excepcionalmente bajos. Con 600 kW por cilindro, ofrece un aumento del 20% en la potencia por cilindro en comparación con su predecesor, el B35:40. El V20 es la variante más grande disponible con una potencia eléctrica de 11,8 MWe.

La central eléctrica existente de 60 MWe de C-Energy se reconstruyó a principios de 2015 con cuatro motores de gas B35:40V20. En aquel momento, esta fue la primera central eléctrica a gas natural, basada en motores de gas de velocidad media en la Región de Bohemia del Sur, preparada para suministrar calor y energía a la red local. Sin embargo, debido a los bajos precios del carbón, la electricidad y el calor en la región aún son generados predominantemente por centrales de carbón. Por tanto, la ampliación de la planta de gas se considera un paso adicional hacia un futuro verde para la región y el país.

Con la ampliación, la central generará, a partir de finales de 2019, un total de 83 MWe de electricidad y calefacción para empresas y hogares en la ciudad cercana de Tabor/Sezimovo Ústí, a unos 100 km al sureste de la capital, Praga.

La entrega de cuatro motores Rolls-Royce, entre otras inversiones, ayudó a transformar la antigua planta de calefacción central a carbón en una moderna planta de energía en 2015. Actualmente, la planta no solo suministra electricidad a la red y calor a clientes industriales y municipios, sino que también proporciona servicios auxiliares a la red de alta tensión. El suministro de los nuevos motores Rolls-Royce permitirá a la planta aumentar su flexibilidad, proporcionar una gama más amplia de servicios y, por lo tanto, seguir siendo competitiva en el mercado energético paneuropeo.

Los motores de velocidad media Rolls-Royce permitirán a C-Energy operar la planta de manera eficiente, tanto en términos de coste como de tiempo. Tanto el B35:40 como el nuevo B36:45, motores de gas de velocidad media, están diseñados de manera flexible para diferentes modos de operación. Se pueden usar para generar en carga base o una potencia máxima o pueden funcionar en ciclo combinado. El calor de los motores se puede utilizar para generar vapor en los generadores de vapor de recuperación de calor, y el vapor se suministra a clientes industriales para sus necesidades tecnológicas. La planta de energía también se puede utilizar para calefacción urbana utilizando el agua caliente de los motores.

La capacidad de arranque rápido de los motores implica que pueden alcanzar su carga nominal en cinco minutos, lo que da a la planta acceso a la cantidad de energía y calor necesarios en un corto espacio de tiempo. Además, los nuevos motores estarán certificados para proporcionar regulación primaria y secundaria a la red.

0

Saft, el fabricante francés de baterías industriales va a celebrar su centenario en Matelec Industry, el Salón Internacional de Soluciones para la Industria y Smart Factory, que tendrá lugar del 13 al 16 de noviembre en IFEMA. En esta edición, se presentará Flex’ion, la nueva solución de baterías compacta de Saft, para aplicaciones de fuentes de alimentación ininterrumpida (UPS) de alta potencia en instalaciones críticas, como los centros de datos e instalaciones de Oil & Gas y Telecom. Estas baterías de Li-ion no precisan mantenimiento y permite un coste total de propiedad (TCO) reducido.

En el stand también tendrá un lugar destacado, la nueva generación Uptimax (tensión de carga 1,39 V/elemento), que permite a los operadores reemplazar sus baterías de plomo sin necesidad de modificar los sistemas de carga existentes y la batería de 24 V Xcelion 6T-E, diseñada para aplicaciones que requieren altos niveles de capacidad de almacenamiento y periodos muy largos de vigilancia silenciosa como vehículos militares, ferroviarios, marinos e híbridos. Además, se podrá conocer la nueva gama de baterías recargables MP con altas capacidades nominales y una larga vida útil, que pueden cargarse y descargarse en un amplio rango de temperaturas, especialmente a bajas temperaturas.

Y para el sector ferroviario, Saft propone la última versión del C.O.M.M. Batt, dispositivo de monitorización que proporciona supervisión remota en tiempo real para baterías instaladas en aplicaciones ferroviarias basadas en la tecnología de níquel cadmio (Ni-Cd). Su principal objetivo es optimizar el mantenimiento predictivo para extender la vida útil y reducir costes operacionales

100 años a la vanguardia de la innovación

Desde su fundación en 1918, Saft ha contribuido al desarrollo industrial y tecnológico, proporcionando baterías altamente especializadas para usos tan diversos que van desde el transporte hasta el almacenamiento de energía y desde la exploración espacial hasta el Internet de las cosas.

Es difícil entender el desarrollo de las baterías en estos cien años sin el papel de innovación que ha tenido Saft”, comenta Ignacio Quiles, Managing Director de Saft Baterías. “Desde sus inicios ha sido un actor esencial para la industria y el transporte, ya sea terrestre, marítimo, aéreo o espacial. Y quiere seguir en esta senda asumiendo un papel activo en la transición energética con soluciones más eficientes para la movilidad eléctrica y el almacenamiento de las energías renovables.

En este sentido, Saft es cofundador de la European Battery Alliance, encabezando la investigación sobre las tecnologías de las baterías del futuro, baterías de estado sólido que serán más seguras y con más densidad energética que sus predecesoras. Estas baterías serán vitales para satisfacer la demanda de vehículos eléctricos y las soluciones de almacenamiento de energía que impulsarán la expansión de la energía renovable solar y eólica.

Como va siendo tradicional en Matelec, Saft entregará el Premio a la Mejor Labor Periodística como un reconocimiento al trabajo de información y divulgación que realizan los periodistas especializados en el sector de la energía. El acto tendrá lugar en el stand de Saft (4C15), el miércoles 14 de noviembre a las 11:30 horas.

Con un sistema eléctrico, prácticamente 100% renovable, Uruguay se planta hacia el futuro mirando las oportunidades que la vertiginosa carrera tecnológica le ofrece para liberarse definitivamente de la pesada carga económica y ambiental del petróleo. Uruguay alcanzó a finales de 2017 la cifra clave de más de 1.500 MW de potencia eólica instalada, superando con creces el objetivo marcado para el país en el documento de Política Energética 2005-2030. Este valor representa, ni más ni menos, que el 75% del pico máximo de consumo del sistema eléctrico uruguayo. Pero la generación eólica no está sola, la generación renovable en su conjunto (eólica, solar, hidroeléctrica y biomasa) representó en 2017 un 98% de la electricidad generada en el país.

En este contexto, AUDEE ha celebrado su IV Congreso Latinoamericano de Energía Eólica (y Otras Energías Renovables), que contó con la participación de representantes gubernamentales, responsables de asociaciones de renovables de toda Latinoamérica y expertos de la industria renovable. No sólo la energía eólica, sino la fotovoltaica, el almacenamiento energético, las redes inteligentes y la movilidad eléctrica, fueron temas a debate del Congreso.

Las sinergias de todas estas tecnologías han conducido a AUDEE a identificar como clave atender a otras realidades y tecnologías, que contribuirán al desarrollo futuro de la energía. Es por eso que sobre la base de su exitosa trayectoria, como asociación especializada en el sector eólico, AUDEE ha evolucionado para acoger todas las actividades de generación de energías renovables y tecnologías de sostenibilidad, convirtiéndose en AUDER (Asociación Uruguaya de Energías Renovables), enfocándose en: energía solar, biomasa, movilidad eléctrica, almacenamiento de energía, redes inteligentes y generación distribuida, entre otras.

Como complemente perfecto a esta nueva realidad de la asociación, la próxima edición del Congreso será convocada como Congreso de Energías Renovables.

El IV Congreso Latinoamericano de Energía Eólica (y Otras Energías Renovables) se celebró en un momento clave para reunir a las asociaciones y cámaras de energías renovables de la región. Son conocidos los dispares procesos que han sufrido las energías renovables en cada país latinoamericano, pero lo que es común es como los entes reguladores han encontrado los procedimientos eficientes para realizar subastas exitosas, particularmente en los últimos tres años, para obtener precios tan competitivos entre 20 a 50 U$D para proyectos tanto eólicos como fotovoltaicos en Chile, Argentina, Brasil, Perú y México.

En todos estos países las asociaciones y cámaras de energías renovables han cumplido un importante papel como interlocutor con los entes reguladores, y como facilitador, advirtiendo con suficiente anticipación los riesgos que conllevan estos procesos un tanto explosivos, donde decenas de proyectos son aprobados al mismo tiempo. La obras de trasmisión, la logística, la financiación, los permisos, todo debe llegar a tiempo para cumplir los plazos de los proyectos.

En energía eólica, las diferentes ponencias y paneles permitieron poner de manifiesto que la generación eólica ha representado en lo que va de 2018 más del 40% de la producción de energía eléctrica en Uruguay, con aproximadamente 750 aerogeneradores en producción. La industria eólica, es hoy una industria madura en el país, lo que confirma la idoneidad de los dos paneles que trataron sobre operación y mantenimiento de parques eólicos, uno específico para mantenimiento de palas y otro para presentaciones empresariales.

La innovación también fue protagonista del congreso, por ejemplo, la innovación en fotovoltaica, con la presentación de las últimas tendencias en módulos fotovoltaicos, un excelente panel sobre la tecnología blockchain aplicada al mercado eléctrico. Y otros temas de máxima actualidad como las criptomonedas basadas en la producción de energía eléctrica y por qué no transacciones inteligentes P2P, en la era de la autoproducción, las baterías, y las redes inteligentes y resilientes

La movilidad eléctrica también tuvo su espacio en el congreso. Uruguay ya cuenta sobre la costa del Río de la Plata y el Océano Atlántico, que es la región más poblada y turística del país, con una red de puntos de recarga para vehículos eléctricos cada 60 km. En el futuro próximo habrán puntos de recarga en todas las capitales departamentales.

En el panel de cierre del congreso quedó patente que las empresas públicas uruguayas se preparan para el futuro: por primera vez los presidentes de la empresa eléctrica y de la petrolera, ambas estatales, dialogaron sobre el futuro de ambas empresas, que en una perspectiva de apenas 10 años se enfrentarán a una realidad con la movilidad eléctrica tomando segmentos importantes del mercado.

El consorcio entre Siemens y Mortenson ha completado con éxito las estaciones de conversión de potencia de corriente continua de alta tensión (HVDC) de 500 kV Bipole III para el cliente Manitoba Hydro. Las estaciones de conversión de HVDC son una parte integral del proyecto de transmisión Manitoba Hydro Bipole III. Toda la línea de transmisión actuará como una “autopista de electricidad”, reforzando la fiabilidad del suministro de electricidad de Manitoba al reducir la dependencia de las líneas de transmisión HVDC existentes, al tiempo que garantiza un transporte de baja pérdida de energía renovable desde las estaciones generadoras del norte para satisfacer los crecientes requerimientos de energía. Las estaciones de conversión de HVDC son subestaciones especializadas que admiten la conversión de energía eléctrica de corriente alterna de alta tensión (HVAC) a corriente continua de alta tensión (HVDC) o viceversa, un componente crítico para interconectar sistemas de energía independientes.

Las estaciones de conversión Bipole III incluyen la estación de conversión Keewatinohk en el norte de Manitoba, cerca de la bahía de Hudson, y la estación de conversión de Riel, cerca de Winnipeg, en la región sur de la provincia. Las estaciones de conversión tienen una capacidad de transmisión de 2.000 MW, suficiente para satisfacer más del 40% de la demanda de electricidad máxima de la provincia. La transmisión HVDC es la tecnología ideal para implementar cuando la electricidad debe transportarse a grandes distancias, desde áreas remotas donde se produce a centros urbanos e industriales donde es necesaria, ya que la transmisión HVDC sufre pérdidas de electricidad mucho más bajas que la transmisión AC estándar.

El consorcio entre Siemens y Mortenson fue responsable del suministro del equipo convertidor HVDC y las instalaciones asociadas, Siemens proporcionó el diseño del sistema, la fabricación, el suministro y la puesta en marcha de la tecnología central HVDC, mientras que Mortenson brindó ayuda en el diseño y en los servicios de construcción para la infraestructura de soporte, incluida la construcción de la estación de conversión, filtros de aire acondicionado y subestaciones transformadoras de corriente continua. La ubicación remota de la estación de conversión Keewatinohk y las condiciones extremas del clima invernal, presentes en ambos sitios, supusieron interesantes desafíos de logística y construcción para el equipo.

0

El nuevo grupo electrógeno MTU Onsite Energy 20V 4000 DS3600 ha sido lanzado recientemente al mercado. Basado en motores de la Serie 4000 mejorada de MTU, el grupo electrógeno DS3600 20V 4000 supera significativamente las ofertas anteriores con un aumento del 10% hasta alrededor de 3.000 kW de potencia eléctrica (3.730 kVA) en modo standby y unos 2.700 kW de potencia eléctrica (3.390 kVA) como generador primario de energía. Los primeros modelos de este motor de la serie 4000 tienen un historial probado con más de 23.000 unidades vendidas para aplicaciones de generación de energía.

Más de 30 de estas nuevas unidades ya están configuradas para su entrega en 2018. La mayor parte del envío inicial, 75 MW en conjunto, está destinado a un grupo mundial de Internet para generar energía de reserva para su centro de datos europeo. MTU Onsite Energy ya ha anunciado un avance a un nivel aún más alto en la forma del grupo electrógeno diesel DS4000 de 20V 4000 que entrega aproximadamente un 16% más de potencia salida, 3.200 kW de potencia eléctrica (4.000 kVA de potencia de reserva), en comparación con ofertas anteriores. En alrededor de 20 m2, ambas unidades ocupan poco espacio.

El diseño optimizado del motor aumenta el rendimiento

Las demandas de potencia cada vez mayores en aplicaciones de misión crítica, como las de los centros de datos, aeropuertos u hospitales, requieren el uso de motores cada vez más potentes, como la Serie 4000 mejorada de MTU, para permitir que los grupos electrógenos avancen sin problemas y cubran la demanda si surge una contingencia

El rendimiento se ha potenciado mediante la optimización del diseño del motor para permitir una mayor BMEP (presión media efectiva) en los cilindros, y la instalación de un turbocompresor rediseñado y equipos periféricos modificados con algunos componentes astutamente emparejados.

Un grupo electrógeno supera el estándar

La experiencia interna en todas las tecnologías clave involucradas aquí, junto con herramientas de simulación y análisis de vanguardia, han permitido desarrollar una generación de motores con que el nuevo grupo electrógeno diesel puede incluso superar el estándar. Una razón es el alto factor de carga del motor que permite que el grupo electrógeno en espera funcione al 85% de su potencia máxima en promedio, un valor que supera los requisitos establecidos en ISO-8528-1 en un 15%. Además, el generador puede funcionar hasta 500 horas al año en su papel principal como fuente de energía de reserva. Este valor va más allá de las 200 horas especificadas en el estándar.

En caso de un corte de energía, entregar una fuente de alimentación fiable en cuestión de segundos es la clave. Los centros de datos con sus sensibles instalaciones de TI presentan el desafío adicional de mitigar las fluctuaciones de tensión y frecuencia. Por lo tanto, estos grupos electrógenos se han desarrollado para frenar estas variaciones por diseño. Recibir el primer pedido del nuevo grupo electrógeno de un jugador global en Silicon Valley es un gran honor.

Certificado para alimentar la red pública

Los grupos electrógenos de la Serie 4000 cumplen con las directrices de VDE (la Asociación Alemana de Tecnologías Eléctricas, Electrónicas y de Información) y están certificados para funcionar en paralelo a la red. Esto permite a los usuarios alimentar la red pública con un beneficio y salvaguardar el suministro en caso de emergencia. En términos de eficiencia energética, este es también un enfoque sensato para hacer frente a las inestabilidades de la red cada vez más comunes derivadas del uso de energías renovables. Los grupos electrógenos diesel certificados de MTU Onsite Energy cumplen todos los requisitos al cumplir los criterios técnicos para hacer esto.

El sector eólico europeo ha añadido 4,5 GW a su potencia instalada en el continente en la primera mitad de 2018, según los datos que WindEurope ha publicado esta semana. La cifra es inferior a la del mismo período del año pasado (6,1 GW) aunque está en línea con las expectativas de crecimiento planteadas.

De los 4,5 GW nuevos que se han instalado, 3,3 GW corresponden a eólica terrestre liderados por Alemania que ha instalado 1,6 GW, Francia con 605 MW y Dinamarca con 202 MW. En cuanto a la eólica marina, la potencia instalada ha sido de 1,1 GW principalmente en Reino Unido con 911 MW, Bélgica (175 MW) y Dinamarca (28 MW). Alemania instalará nuevos megavatios de eólica offshore en la segunda mitad del año.

Para todo 2018 se espera que haya 3,3 GW nuevos en eólica marina y 10,2 GW de terrestre. Esto significará que la potencia eólica total instalada en todo el año 2018 será de 13,5 GW.

Francia ha instalado una gran cantidad de eólica terrestre este año, pero no ha emitido ningún nuevo permiso para eólica terrestre en los últimos ocho meses debido a un problema administrativo, que también ha causado que su última subasta no se haya cubierto. Por tanto habrá una disminución de nuevas instalaciones, creando incertidumbre en la cadena de suministro.

En Alemania, actualmente los proyectos necesitan un permiso para ofertar en subastas de eólica terrestre, pero WindEurope considera que esta normativa se convierta en permanente. Además, aún no hay claridad sobre cuándo se van a subastar los 4 GW de eólica terrestre prometidos en el acuerdo de coalición para 2019-20. Y el nuevo Gobierno está retrasando la confirmación de los volúmenes de la subasta. Al igual que todos los Estados miembros, ahora deben dar una visibilidad de cinco años sobre el calendario y los volúmenes de las subastas futuras, en virtud de la nueva Directiva sobre energías renovables.

Esta visibilidad es clave para la cadena de suministro y para mantener los empleos y el crecimiento de la energía eólica en Europa. Las inversiones en fabricación, habilidades e I + D solo ocurren cuando los gobiernos otorgan visibilidad a largo plazo a la cadena de suministro. Esta claridad ayuda a tomar nuevas decisiones de inversión y reducir costes. Abordar estos problemas será clave para permitir que Europa alcance su objetivo del 32% de energía renovable para 2030 de manera rentable.

En el sector eólico marino, Europa es demasiado dependiente de Reino Unido, que está avanzando en las instalaciones actuales y comprometiéndose con volúmenes futuros. Por el contrario, la tasa de nuevas instalaciones se ha ralentizado en Alemania. Otros países también necesitan reforzar y acelerar sus planes sobre eólica marina.

Respecto a la situación actual que está viviendo el sector eólico en España, Juan Virgilio Márquez, director general de la Asociación Empresarial Eólica (AEE), ha indicado que “las subastas que se han celebrado en España en 2016 y 2017 han dado un impulso al sector eólico tras tres años de bajo crecimiento. Por lo que la eólica española mira con ilusión la instalación de los más de 4.600 MW adjudicados y confía en que todos los actores implicados -promotores, fabricantes, entidades financieras, administraciones públicas, autonómicas y municipales, etcétera- pongan de su parte para que se hagan a tiempo los proyectos“. El sector está a la espera de un calendario de nuevas subastas para cumplir con los objetivos de energía renovable a 2030 y que, para alcanzarlos, “el sector solicita como requisitos que haya seguridad jurídica, simplificación administrativa, invariabilidad de la rentabilidad razonable y una reflexión sobre el diseño del mercado y la fiscalidad necesarias para que se lleven a cabo los proyectos con el menor coste posible. De esta manera, habrá continuidad de trabajo en la industria eólica en España y seguir siendo uno de los principales países de referencia en el sector eólico mundial“, asegura Márquez.

El consorcio integrado por el contratista EPC TSK y Rolls-Royce ha firmado un contrato de ingeniería, adquisición y construcción con Prime Energía Quickstart Spa, filial de Prime Energia SpA, para la construcción de cinco centrales eléctricas en Chile, equipadas con 265 grupos electrógenos MTU Onsite Energy 16V 4000. Prime Energía es una subsidiaria de Glenfarne Group, LLC, con sede en Nueva York, promotor, propietario-operador y gestor industrial de activos de energía e infraestructura. Las cinco centrales eléctricas de Prime Energía ofrecerán una potencia total combinada de 475 MW, que se conectará a la red eléctrica de Chile para proporcionar capacidad de respaldo al sistema de suministro energético del país.

Estas centrales son una parte integral de la estrategia de Glenfarne para desarrollar infraestructura energética que respalde la proliferación de energías renovables y la estabilidad de la red en regiones de América con un gran potencial de crecimiento.

El pedido para entregar las centrales a las tres primeras ubicaciones se ha colocado oficialmente con el consorcio, con el pedido de las dos plantas adicionales programado para poco después. Los grupos electrógenos se conectarán digitalmente a través de pasarelas que envían datos a la plataforma MTU GoManage para monitorizar y analizar los datos del sistema. Las centrales eléctricas serán monitorizadas y controladas a distancia en tiempo real por el Centro de Operaciones de Red de última generación de Prime Energía en Santiago.

Chile es una de las potencias económicas de más rápido crecimiento en Latinoamérica. Se espera que la demanda de energía crezca a una tasa anual del 4% en los próximos 5 años, y el país espera beneficiarse de la gran disponibilidad de fuentes de energía renovables. El porcentaje de energía renovable en el mix energético chileno crece a un ritmo constante: su participación, en términos de potencia instalada, se ha más que triplicado desde 2012, y en 2017, con una potencia de alrededor de 4.300 MW, fue aproximadamente del 18%. Para 2035, se espera que no menos del 60% de la electricidad del país se produzca a partir de energía renovable, aumentando al 70% para 2050. A medida que Chile aumenta su dependencia de fuentes de energía renovables variables, habrá un mayor requerimiento de energía de respaldo de respuesta y costes competitivos, tales como las centrales eléctricas de la cartera de Prime Energía para estabilizar la red eléctrica.

Abengoa participa en el proyecto europeo Grasshopper (GRid ASsiSting modular HydrOgen Pem PowER plant), liderando el diseño, construcción y pruebas de una planta piloto, para su posterior escalado a MW. El objetivo de este nuevo proyecto no es otro que la creación de una nueva generación de plantas de potencia basadas en pilas de combustibles (FCPP: Fuel Cell Power Plant) aptas para una operación flexible para el soporte de la red. La planta de potencia utilizará hidrógeno verde y lo convertirá en electricidad y calor sin emisiones. Dadas las fluctuaciones en la energía procedente de las fuentes renovables,  este tipo de plantas puede contribuir cada vez más a un suministro estable de energía.

En el consorcio de este proyecto participan, además de Abengoa, INEA -Informatizacija Energetika Avtomatizacija, Johnson Matthey Fuel Cells Limited (JMFC), Nedstack Fuel Cell Technology B.V., Politécnico di Milano (Polimi) y Zentrum für Brennstoffzellen Technik Gmbh (ZBT).

El desarrollo de un sistema de pila de combustible, con considerables innovaciones en las membranas y otros componentes, se realizará mediante modelado, experimentos y experiencia industrial de JMFC, ZBT y Nedstack. Polimi prestará apoyo en el proceso de toma de decisiones mediante actividades de modelado y optimización. La implementación de la funcionalidad de la red inteligente dentro del control e integración de la FCPP, será realizada por INEA.

La unidad de demostración utilizará el excedente de hidrógeno producido en una moderna planta de cloro situada en Delfzijl, donde Akzo Nobel y Nedstack han estado probando tecnología de pilas de combustible durante 10 años.

La reunión de lanzamiento del proyecto Grasshopper tuvo lugar a principios de enero de este año  en las instalaciones de Akzo Nobel, en Delfzijl, con la participación de todos los socios del consorcio, así como los miembros del consejo consultivo y representantes de la Fuel Cells and Hydrogen 2 Joint Undertaking (FCH JU), asociación público-privada que apoya las tecnologías de energía de pilas de combustible e hidrógeno en Europa. En este emplazamiento es donde tendrá lugar la fase de demostración del proyecto hasta su terminación.

El consejo consultivo del proyecto estará formado por miembros de Akzo Nobel Industrial Chemicals B.V, Tennet TSO B.V, SWW Wunsiedel y participantes del consorcio GOFLEX, que será consultado en la fase de proyecto.

Coordinado por INEA, el proyecto Grasshopper tendrá una duración de 36 meses en los que contará con un presupuesto total de 4,4 M€. Este proyecto ha sido financiado por la Fuel Cells and Hydrogen 2 Joint Undertaking bajo acuerdo firmado número 779430. Este organismo recibe apoyo del programa marco Horizonte 2020 de investigación e innovación de la Unión Europea.

Instalación de procesamiento, almacenamiento de biomasa y planta de generación de energía eléctrica a partir de biomasa de 50 MW en Huelva (España). Foto cortesía de ENCE | Processing facilities, biomass storage and 50 MW biomass power plant in Huelva (Spain). Photo courtesy of ENCE

Según un nuevo informe de ecoprog, a principios de 2017 había en operación en todo el mundo 3.510 plantas de biomasa, que generaban electricidad y calor a partir de biomasa sólida, con una potencia instalada total de 52,8 GW. A fines de 2017, ecoprog estima que había alrededor de 3.700 centrales operativas, con una potencia de aproximadamente 56,2 GW. En solo un año, se pusieron en servicio casi 200 plantas de biomasa con una potencia de casi 3 GW. Las significativas tasas de crecimiento en Asia están compensando el desarrollo menos dinámico en los mercados clave europeos. Al mismo tiempo, en 2017 continuó la consolidación y la globalización entre los proveedores de tecnología.

El mercado de las centrales eléctricas de biomasa, el número de plantas y sus respectivas potencias, es resultado de los esquemas de subsidios y la disponibilidad de condiciones económicas positivas en lugares favorables, por ejemplo, en la industria azucarera o papelera. Los activos de regiones con altos subsidios políticos en forma de tarifas de inyección a red, son plantas relativamente jóvenes, que se caracterizan por ser de pequeña escala. Este es el caso en la mayoría de países europeos, donde actualmente, muchos sistemas subvencionan principalmente plantas de pequeña escala, debido a la sostenibilidad ecológica. Por tanto, las plantas europeas son, en promedio, más pequeñas que en otras regiones, como Norteamérica. Por el contrario, la disponibilidad de combustible es el factor determinante en América del Norte y del Sur, así como en muchos mercados asiáticos, ya que los niveles de subsidio suelen ser más bajos que en Europa.

Norteamérica y Europa utilizan principalmente madera para generar energía, mientras que los países de América del Sur incineran principalmente bagazo, un residuo de la industria de la caña de azúcar. Los residuos agrícolas como paja, cáscara de arroz y racimos vacíos de la industria del aceite de palma, representan los principales combustibles en Asia. Leer más…

Artículo publicado en: FuturENERGY Marzo 2018

En 2017, la termosolar alcanzó una potencia instalada a nivel mundial de 5,1 GW. De acuerdo con la AIE, se espera que esta cifra aumente a 10 GW para 2022, con casi toda la nueva potencia incorporando almacenamiento. Actualmente, en todo el mundo 23 países tienen proyectos termosolares, mientras que las mayores potencias instaladas están en EE.UU. y España, hay plantas termosolares en operación o en desarrollo en muchos otros países, incluidos Emiratos Árabes Unidos, Egipto, Israel, India, China, Sudáfrica, Chile, México, Australia, Kuwait y Arabia Saudí. En septiembre de 2016, China lanzó su primer lote de proyectos termosolares piloto, y aunque este lote avanza más lento de lo esperado, como informó CSP Focus a principios de este año, la Administración Nacional de Energía de China ha indicado que de acuerdo con el estado de construcción del primer lote de proyectos termosolares piloto, China lanzará un segundo lote de proyectos piloto en el futuro.

En los últimos años, la industria termosolar china ha avanzado mucho y se están produciendo algunos cambios positivos. A través de años de estudio y práctica, China ha construido con éxito plantas termosolares comerciales como la planta termosolar de torre SUPCON de 10 MW y la planta termosolar de torre y sales fundidas Shouhang de 10 MW. La cadena de valor local está madurando y haciendo una gran contribución a varias industrias tradicionales, como la industria química, la del hierro y acero, la ingeniería y la construcción.

111 proyectos termosolares con una potencia total de 9 GW participaron en la solicitud del primer lote de 1.349 GW de 20 proyectos termosolares piloto en China, en septiembre de 2016. Hasta ahora, han pasado casi 18 meses, pero de hecho, los proyectos de este primer lote progresan más lentamente de lo esperado, y solo unos pocos se podrán completar para finales de 2018. Sin embargo, no se debería juzgar y predecir el futuro de la industria termosolar china simplemente por la finalización del primer lote de proyectos piloto. La razón por la cual el gobierno fomenta el desarrollo y la construcción de estos 20 primeros proyectos termosolares piloto es verificar la tecnología y la viabilidad de implementación de proyectos termosolares y cultivar una cadena de valor termosolar industrial local, así como explorar y formar un me¬canismo regulatorio de apoyo a esta tecnología. Leer más…

Artículo publicado en: FuturENERGY Marzo 2018